-
Notifications
You must be signed in to change notification settings - Fork 1
/
figure_wda.py
132 lines (106 loc) · 4.17 KB
/
figure_wda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python
# coding: utf-8
__author__ = 'Alain Rakotomamonjy'
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
color_pal_t = sns.color_palette("colorblind", 11).as_hex()
color_pal = color_pal_t.copy()
colors = ["black", "salmon pink", "neon pink", "cornflower", "cobalt blue", "blue green",
"aquamarine", "dark yellow", "golden yellow", "reddish pink", "reddish purple"]
color_pal = sns.xkcd_palette(colors)
plt.close("all")
pathres = './result/wda/'
data = 'toy'
if data == 'toy':
n_vec = [200,500,1000,2000,3500,5000]
nb_p_vec = 7
p = 2
else:
data = 'mnist'
n_vec = [200,500,1000,2000,3000,4000]
nb_p_vec = 7
p = 20
method_vec = ['wda', 'swda']
legend_vec_accur = ['Sinkhorn', 'dec=1.5', 'dec=2', 'dec=5', 'dec=10', 'dec=20', 'dec=50', 'dec=100']
legend_vec_time = ['dec=1.5', 'dec=2', 'dec=5', 'dec=10', 'dec=20', 'dec=50', 'dec=100']
t = 1
in_sample = 0
Mres = np.zeros((len(n_vec), nb_p_vec+1))
Sres = np.zeros((len(n_vec), nb_p_vec+1))
Mtime = np.zeros((len(n_vec), nb_p_vec+1))
Stime = np.zeros((len(n_vec), nb_p_vec+1))
for i_k, n in enumerate(n_vec):
filename = 'wda_{:}_n{:d}_p{:d}'.format(data, n, p)
# reading files and performance
res = np.load(pathres + filename + '.npz')
aux = res['bc_wda']
nb_computed = np.where(aux)[0].shape[0]
print(nb_computed)
print(' \t\t {:2.2f} \t\t{:d}'.format(aux[np.where(aux)].sum() / nb_computed * 100, nb_computed))
Mres[i_k,0] = aux[np.where(aux)].mean()
Sres[i_k,0] = aux[np.where(aux)].std()
aux = res['bc_swda']
nb_computed = np.where(np.sum(aux,axis=1))[0].shape[0]
print(nb_computed)
mean_perf = aux[np.where(np.sum(aux,axis=1))[0]].mean(axis=0)
std_perf = aux[np.where(np.sum(aux,axis=1))[0]].std(axis=0)
Mres[i_k,1:] = mean_perf # stocking average perf for all decimation
Sres[i_k,1:] = std_perf
# reading computation time
aux = res['time_wda']
nb_computed = np.where(aux)[0].shape[0]
print(nb_computed)
print(' \t\t {:2.2f} \t\t{:d}'.format( aux[np.where(aux)].sum() / nb_computed * 100, nb_computed))
Mtime[i_k,0] = aux[np.where(aux)].mean()
Stime[i_k,0] = aux[np.where(aux)].std()
# computing gain
aux1 = aux.reshape(-1,1) / res['time_swda']
nb_computed = np.where(np.isnan(np.sum(aux1, axis=1)) == False)[0].shape[0]
print(nb_computed)
mean_perf = aux1[ np.where(np.isnan(np.sum(aux1, axis=1)) == False)[0]].mean(axis=0)
std_perf = aux1[np.where(np.isnan(np.sum(aux1, axis=1)) ==False)[0]].std(axis=0)
# keeping gain for all p
Mtime[i_k,1:] = mean_perf
Stime[i_k,1:] = std_perf
#%% figure for accuracy
plt.figure(0)
ax = []
markert = ['o', 'p', 's', 'd', 'h', 'o', 'p', '<', '>', '8', 'P']
colort = color_pal
for i in range(nb_p_vec+1):
ax1, = plt.plot(n_vec, Mres[:,i], label=str(i), lw=2, marker=markert[i], markersize=12, c=colort[i])
#error=Sres[:,i]
#plt.fill_between(n_vec, Mres[:,i]-error, Mres[:,i]+error, color=colort[i],alpha = 0.1)
ax.append(ax1)
if data == 'mnist':
plt.ylim([0.4,0.8])
plt.xlim([0,4200])
else:
plt.ylim([0.6,1])
plt.xlim([0,4200])
plt.xlabel('Number of samples', fontsize = 16)
plt.ylabel('Accuracy', fontsize = 16)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.legend(legend_vec_accur)
plt.title('WDA+Knn on {:}'.format(data))
plt.grid(color='k', linestyle=':', linewidth=1,alpha=0.5)
filename = 'wda_accur_{:}.pdf'.format(data)
plt.savefig('figure/' + filename,dpi=600,bbox_inches='tight')
# %% figure for timing
plt.figure(1)
for i in range(1,nb_p_vec+1):
ax1, = plt.plot(n_vec, Mtime[:,i],label=str(i), lw = 2, marker = markert[i], markersize=12, c=colort[i])
#error=Stime[:,i]
#plt.fill_between(n_vec, Mtime[:,i]-error, Mtime[:,i]+error, color=colort[i],alpha = 0.1)
ax.append(ax1)
plt.xlabel('Number of samples', fontsize=16)
plt.ylabel('Running Time Gain', fontsize=16)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.legend(legend_vec_time)
plt.title('Screened WDA on {:}'.format(data))
plt.grid(color='k', linestyle=':', linewidth=1, alpha=0.5)
filename = 'wda_gain_{:}.pdf'.format(data)
plt.savefig('figure/' + filename, dpi=600, bbox_inches='tight')