-
Notifications
You must be signed in to change notification settings - Fork 1
/
marg_expe.py
209 lines (171 loc) · 6.9 KB
/
marg_expe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python
# coding: utf-8
__author__ = 'Gilles Gasso'
import numpy as np
from numpy.linalg import norm as norm
import scipy.stats as stats
import os
os.environ["OMP_NUM_THREADS"] = "1"
np.random.seed(3946)
import matplotlib.pyplot as plt
plt.close('all')
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
from time import process_time as time
from ot.datasets import make_data_classif
from ot import dist, sinkhorn
from screenkhorn import Screenkhorn
#%% Datasets
def subsample(x,y,n, nb_class=10):
ind_rand = np.random.permutation(x.shape[0])
x = x[ind_rand]
y = y[ind_rand]
x_r = np.empty((0,x.shape[1]))
y_r = np.empty(0)
for i in range(nb_class):
ind = np.where(y==i)[0]
ind_sub = ind[0:n]
x_r = np.vstack((x_r,x[ind_sub]))
y_r = np.hstack((y_r,y[ind_sub]))
return x_r, y_r
#%%
def toy(n_samples_source,n_samples_target,nz=0.8,random_state=None):
Xs, ys = make_data_classif('3gauss', n_samples_source,nz=nz,random_state=random_state)
Xt, yt = make_data_classif('3gauss2', n_samples_target,nz=nz, random_state=random_state)
return Xs, ys, Xt, yt
#%%
def plot_mean_and_CI(pvect, mean, margin, color_mean=None, color_shading=None):
plt.fill_between(pvect, mean+margin, mean-margin,
color=color_shading, alpha=.15)
plt.semilogx(pvect, mean, color_mean, marker='s', markersize=8)
#plt.xlim(max(pvect), min(pvect))
#plt.xticks(pvect, pvect)
#%%
def compare_marginals(a, b, M, reg, pvect = [0.9, 0.7, 0.5, 0.3, 0.1]):
n_pvect = len(pvect)
rel_time_vect = np.empty(n_pvect)
diff_a_vect = np.empty(n_pvect)
diff_b_vect = np.empty(n_pvect)
rel_cost_vect = np.empty(n_pvect)
# sinkhorn
tic = time()
P_sink = sinkhorn(a, b, M, reg)
time_sink = time() - tic
Pstar = P_sink[0]
for j,p in enumerate(pvect):
print('p:', p)
# screenkhorn
n_budget = int(np.ceil(a.shape[0]*p))
m_budget = int(np.ceil(b.shape[0]*p))
tic = time()
screenkhorn = Screenkhorn(a, b, M, reg, n_budget, m_budget, verbose=False)
lbfgsb = screenkhorn.lbfgsb()
time_bfgs = time() - tic
P_sc= lbfgsb[2]
# screenkhorn marginals
a_sc = P_sc @ np.ones(b.shape)
b_sc = P_sc.T @ np.ones(a.shape)
# comparisons
rel_time_vect[j] = time_bfgs/time_sink
diff_a_vect[j] = norm(a - a_sc, ord=1)**2
diff_b_vect[j] = norm(b - b_sc, ord=1)**2
rel_cost_vect[j] = np.abs(np.sum(M*(P_sc - Pstar)))/np.sum(M*Pstar)
return diff_a_vect, diff_b_vect, rel_time_vect,rel_cost_vect
#%%
pathres= './result/'
nvect = [200,500, 1000, 2500, 3000]
regvect = [1e-1, 5e-1, 1, 10]
nvect = [1000]
regvect=[1]
pvect = [0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3,
0.2, 0.1, 0.05, 0.01]
datatype = 'toy' # change to mnist to run on Mnist dataset
n_iter = 10 # we repeat n_iter times
#%%
for n in nvect:
print('n samples :',n)
# filename
filename = 'marginals_{:}_n{:d}'.format(datatype,n)
M_diff_a = np.empty((n_iter, len(regvect), len(pvect)))
M_diff_b = np.empty((n_iter, len(regvect), len(pvect)))
M_time = np.empty((n_iter, len(regvect), len(pvect)))
M_cost = np.empty((n_iter, len(regvect), len(pvect)))
for i in range(n_iter):
np.random.seed(i)
# gen data
if datatype =='toy':
Xs,ys,Xt,yt = toy(n_samples_source=n, n_samples_target=n, nz=0.8, random_state=i)
else:
data = np.load('./data/mnist_usps_feat10.npz')
Xs,ys = subsample(data['X_s'], data['y_s'],n//10)
Xt,yt = subsample(data['X_t'], data['y_t'],n//10)
# cost matrix
M = dist(Xs, Xt)
#M /= M.max()
# Marginals
a = np.ones(n)/n
b = np.ones(n)/n
for j, reg in enumerate(regvect):
print('reg:', reg)
d_av, d_bv, rel_timev,rel_costv = compare_marginals(a, b, M, reg, pvect)
M_diff_a[i, j, :] = d_av
M_diff_b[i, j, :] = d_bv
M_time[i, j, :] = rel_timev
M_cost[i,j,:] = rel_costv
np.savez(pathres + filename,
M_diff_a = M_diff_a, M_diff_b = M_diff_b,
M_time = M_time, M_cost = M_cost)
#%% Plots
pathfig = './figure/'
z_crit = stats.norm.ppf(q = 0.95)
for n in nvect:
print('n samples :',n)
# filename
filename = 'marginals_{:}_n{:d}.npz'.format(datatype,n)
np.load(pathres + filename)
coeff = z_crit/np.sqrt(n_iter)
plt.close('all')
for j, reg in enumerate(regvect):
filename_fig = 'marginals_{:}_n{:d}_reg{:d}.pdf'.format(datatype,n, int(10*reg))
diff_a = M_diff_a[:, j, :]
diff_a_mean = diff_a.mean(axis=0)
diff_a_std = diff_a.std(axis=0)
plt.figure(figsize=(20, 5))
plt.subplot(1,2,1)
plot_mean_and_CI(pvect, diff_a_mean, diff_a_std*coeff,
color_mean='b', color_shading='b')
plt.xlabel(r'$n_b/n$')
plt.ylabel(r'$\|\|\, \mu - \mu^{sc} \, \|\|_1^2$')
plt.title('Regularization $\eta = ${:} and $n=m=${:d}'.format(reg, n))
diff_b = M_diff_b[:, j, :]
diff_b_mean = diff_b.mean(axis=0)
diff_b_std = diff_b.std(axis=0)
plt.subplot(1,2,2)
plot_mean_and_CI(pvect, diff_b_mean, diff_b_std*coeff,
color_mean='g', color_shading='g')
plt.xlabel(r'$m_b/m$')
plt.ylabel(r'$\||\, \nu - \nu^{sc} \, \|\|_1^2$')
plt.title('Regularization $\eta = ${:} and $n=m=${:d}'.format(reg,n))
plt.savefig(pathfig+filename_fig, bbox_inches='tight')
rel_time = M_time[:,j,:]
rel_time_mean = rel_time.mean(axis=0)
rel_time_std = rel_time.std(axis=0)
plt.figure(figsize=(9, 5))
plot_mean_and_CI(pvect, rel_time_mean, rel_time_std*coeff,
color_mean='k', color_shading='k')
plt.xlabel(r'$n_b/n$')
plt.ylabel('Time Ratio')
plt.title('Regularization $\eta = ${:} and $n=m=${:d}'.format(reg,n))
filename_fig_time = 'time_{:}_n{:d}_reg{:d}.pdf'.format(datatype,n, int(10*reg))
plt.savefig(pathfig+filename_fig_time, bbox_inches='tight')
rel_cost = M_cost[:,j,:]
rel_cost_mean = rel_cost.mean(axis=0)
rel_cost_std = rel_cost.std(axis=0)
plt.figure(figsize=(9, 5))
plot_mean_and_CI(pvect, rel_cost_mean, rel_cost_std*coeff,
color_mean='k', color_shading='k')
plt.xlabel(r'$n_b/n$')
plt.ylabel('Divergence Ratio')
plt.title('Regularization $\eta = ${:} and $n=m=${:d}'.format(reg,n))
filename_fig_time = 'divergence_{:}_n{:d}_reg{:d}.pdf'.format(datatype,n, int(10*reg))
plt.savefig(pathfig+filename_fig_time, bbox_inches='tight')