-
Notifications
You must be signed in to change notification settings - Fork 102
/
utils.py
277 lines (230 loc) · 11.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from __future__ import print_function, division
from torch.utils.data import Dataset, DataLoader
import scipy.io as scp
import numpy as np
import torch
#___________________________________________________________________________________________________________________________
### Dataset class for the NGSIM dataset
class ngsimDataset(Dataset):
def __init__(self, mat_file, t_h=30, t_f=50, d_s=2, enc_size = 64, grid_size = (13,3)):
self.D = scp.loadmat(mat_file)['traj']
self.T = scp.loadmat(mat_file)['tracks']
self.t_h = t_h # length of track history
self.t_f = t_f # length of predicted trajectory
self.d_s = d_s # down sampling rate of all sequences
self.enc_size = enc_size # size of encoder LSTM
self.grid_size = grid_size # size of social context grid
def __len__(self):
return len(self.D)
def __getitem__(self, idx):
dsId = self.D[idx, 0].astype(int)
vehId = self.D[idx, 1].astype(int)
t = self.D[idx, 2]
grid = self.D[idx,8:]
neighbors = []
# Get track history 'hist' = ndarray, and future track 'fut' = ndarray
hist = self.getHistory(vehId,t,vehId,dsId)
fut = self.getFuture(vehId,t,dsId)
# Get track histories of all neighbours 'neighbors' = [ndarray,[],ndarray,ndarray]
for i in grid:
neighbors.append(self.getHistory(i.astype(int), t,vehId,dsId))
# Maneuvers 'lon_enc' = one-hot vector, 'lat_enc = one-hot vector
lon_enc = np.zeros([2])
lon_enc[int(self.D[idx, 7] - 1)] = 1
lat_enc = np.zeros([3])
lat_enc[int(self.D[idx, 6] - 1)] = 1
return hist,fut,neighbors,lat_enc,lon_enc
## Helper function to get track history
def getHistory(self,vehId,t,refVehId,dsId):
if vehId == 0:
return np.empty([0,2])
else:
if self.T.shape[1]<=vehId-1:
return np.empty([0,2])
refTrack = self.T[dsId-1][refVehId-1].transpose()
vehTrack = self.T[dsId-1][vehId-1].transpose()
refPos = refTrack[np.where(refTrack[:,0]==t)][0,1:3]
if vehTrack.size==0 or np.argwhere(vehTrack[:, 0] == t).size==0:
return np.empty([0,2])
else:
stpt = np.maximum(0, np.argwhere(vehTrack[:, 0] == t).item() - self.t_h)
enpt = np.argwhere(vehTrack[:, 0] == t).item() + 1
hist = vehTrack[stpt:enpt:self.d_s,1:3]-refPos
if len(hist) < self.t_h//self.d_s + 1:
return np.empty([0,2])
return hist
## Helper function to get track future
def getFuture(self, vehId, t,dsId):
vehTrack = self.T[dsId-1][vehId-1].transpose()
refPos = vehTrack[np.where(vehTrack[:, 0] == t)][0, 1:3]
stpt = np.argwhere(vehTrack[:, 0] == t).item() + self.d_s
enpt = np.minimum(len(vehTrack), np.argwhere(vehTrack[:, 0] == t).item() + self.t_f + 1)
fut = vehTrack[stpt:enpt:self.d_s,1:3]-refPos
return fut
## Collate function for dataloader
def collate_fn(self, samples):
# Initialize neighbors and neighbors length batches:
nbr_batch_size = 0
for _,_,nbrs,_,_ in samples:
nbr_batch_size += sum([len(nbrs[i])!=0 for i in range(len(nbrs))])
maxlen = self.t_h//self.d_s + 1
nbrs_batch = torch.zeros(maxlen,nbr_batch_size,2)
# Initialize social mask batch:
pos = [0, 0]
mask_batch = torch.zeros(len(samples), self.grid_size[1],self.grid_size[0],self.enc_size)
mask_batch = mask_batch.byte()
# Initialize history, history lengths, future, output mask, lateral maneuver and longitudinal maneuver batches:
hist_batch = torch.zeros(maxlen,len(samples),2)
fut_batch = torch.zeros(self.t_f//self.d_s,len(samples),2)
op_mask_batch = torch.zeros(self.t_f//self.d_s,len(samples),2)
lat_enc_batch = torch.zeros(len(samples),3)
lon_enc_batch = torch.zeros(len(samples), 2)
count = 0
for sampleId,(hist, fut, nbrs, lat_enc, lon_enc) in enumerate(samples):
# Set up history, future, lateral maneuver and longitudinal maneuver batches:
hist_batch[0:len(hist),sampleId,0] = torch.from_numpy(hist[:, 0])
hist_batch[0:len(hist), sampleId, 1] = torch.from_numpy(hist[:, 1])
fut_batch[0:len(fut), sampleId, 0] = torch.from_numpy(fut[:, 0])
fut_batch[0:len(fut), sampleId, 1] = torch.from_numpy(fut[:, 1])
op_mask_batch[0:len(fut),sampleId,:] = 1
lat_enc_batch[sampleId,:] = torch.from_numpy(lat_enc)
lon_enc_batch[sampleId, :] = torch.from_numpy(lon_enc)
# Set up neighbor, neighbor sequence length, and mask batches:
for id,nbr in enumerate(nbrs):
if len(nbr)!=0:
nbrs_batch[0:len(nbr),count,0] = torch.from_numpy(nbr[:, 0])
nbrs_batch[0:len(nbr), count, 1] = torch.from_numpy(nbr[:, 1])
pos[0] = id % self.grid_size[0]
pos[1] = id // self.grid_size[0]
mask_batch[sampleId,pos[1],pos[0],:] = torch.ones(self.enc_size).byte()
count+=1
return hist_batch, nbrs_batch, mask_batch, lat_enc_batch, lon_enc_batch, fut_batch, op_mask_batch
#________________________________________________________________________________________________________________________________________
## Custom activation for output layer (Graves, 2015)
def outputActivation(x):
muX = x[:,:,0:1]
muY = x[:,:,1:2]
sigX = x[:,:,2:3]
sigY = x[:,:,3:4]
rho = x[:,:,4:5]
sigX = torch.exp(sigX)
sigY = torch.exp(sigY)
rho = torch.tanh(rho)
out = torch.cat([muX, muY, sigX, sigY, rho],dim=2)
return out
## Batchwise NLL loss, uses mask for variable output lengths
def maskedNLL(y_pred, y_gt, mask):
acc = torch.zeros_like(mask)
muX = y_pred[:,:,0]
muY = y_pred[:,:,1]
sigX = y_pred[:,:,2]
sigY = y_pred[:,:,3]
rho = y_pred[:,:,4]
ohr = torch.pow(1-torch.pow(rho,2),-0.5)
x = y_gt[:,:, 0]
y = y_gt[:,:, 1]
# If we represent likelihood in feet^(-1):
out = 0.5*torch.pow(ohr, 2)*(torch.pow(sigX, 2)*torch.pow(x-muX, 2) + torch.pow(sigY, 2)*torch.pow(y-muY, 2) - 2*rho*torch.pow(sigX, 1)*torch.pow(sigY, 1)*(x-muX)*(y-muY)) - torch.log(sigX*sigY*ohr) + 1.8379
# If we represent likelihood in m^(-1):
# out = 0.5 * torch.pow(ohr, 2) * (torch.pow(sigX, 2) * torch.pow(x - muX, 2) + torch.pow(sigY, 2) * torch.pow(y - muY, 2) - 2 * rho * torch.pow(sigX, 1) * torch.pow(sigY, 1) * (x - muX) * (y - muY)) - torch.log(sigX * sigY * ohr) + 1.8379 - 0.5160
acc[:,:,0] = out
acc[:,:,1] = out
acc = acc*mask
lossVal = torch.sum(acc)/torch.sum(mask)
return lossVal
## NLL for sequence, outputs sequence of NLL values for each time-step, uses mask for variable output lengths, used for evaluation
def maskedNLLTest(fut_pred, lat_pred, lon_pred, fut, op_mask, num_lat_classes=3, num_lon_classes = 2,use_maneuvers = True, avg_along_time = False):
if use_maneuvers:
acc = torch.zeros(op_mask.shape[0],op_mask.shape[1],num_lon_classes*num_lat_classes).cuda()
count = 0
for k in range(num_lon_classes):
for l in range(num_lat_classes):
wts = lat_pred[:,l]*lon_pred[:,k]
wts = wts.repeat(len(fut_pred[0]),1)
y_pred = fut_pred[k*num_lat_classes + l]
y_gt = fut
muX = y_pred[:, :, 0]
muY = y_pred[:, :, 1]
sigX = y_pred[:, :, 2]
sigY = y_pred[:, :, 3]
rho = y_pred[:, :, 4]
ohr = torch.pow(1 - torch.pow(rho, 2), -0.5)
x = y_gt[:, :, 0]
y = y_gt[:, :, 1]
# If we represent likelihood in feet^(-1):
out = -(0.5*torch.pow(ohr, 2)*(torch.pow(sigX, 2)*torch.pow(x-muX, 2) + 0.5*torch.pow(sigY, 2)*torch.pow(y-muY, 2) - rho*torch.pow(sigX, 1)*torch.pow(sigY, 1)*(x-muX)*(y-muY)) - torch.log(sigX*sigY*ohr) + 1.8379)
# If we represent likelihood in m^(-1):
# out = -(0.5 * torch.pow(ohr, 2) * (torch.pow(sigX, 2) * torch.pow(x - muX, 2) + torch.pow(sigY, 2) * torch.pow(y - muY, 2) - 2 * rho * torch.pow(sigX, 1) * torch.pow(sigY, 1) * (x - muX) * (y - muY)) - torch.log(sigX * sigY * ohr) + 1.8379 - 0.5160)
acc[:, :, count] = out + torch.log(wts)
count+=1
acc = -logsumexp(acc, dim = 2)
acc = acc * op_mask[:,:,0]
if avg_along_time:
lossVal = torch.sum(acc) / torch.sum(op_mask[:, :, 0])
return lossVal
else:
lossVal = torch.sum(acc,dim=1)
counts = torch.sum(op_mask[:,:,0],dim=1)
return lossVal,counts
else:
acc = torch.zeros(op_mask.shape[0], op_mask.shape[1], 1).cuda()
y_pred = fut_pred
y_gt = fut
muX = y_pred[:, :, 0]
muY = y_pred[:, :, 1]
sigX = y_pred[:, :, 2]
sigY = y_pred[:, :, 3]
rho = y_pred[:, :, 4]
ohr = torch.pow(1 - torch.pow(rho, 2), -0.5)
x = y_gt[:, :, 0]
y = y_gt[:, :, 1]
# If we represent likelihood in feet^(-1):
out = 0.5*torch.pow(ohr, 2)*(torch.pow(sigX, 2)*torch.pow(x-muX, 2) + torch.pow(sigY, 2)*torch.pow(y-muY, 2) - 2 * rho*torch.pow(sigX, 1)*torch.pow(sigY, 1)*(x-muX)*(y-muY)) - torch.log(sigX*sigY*ohr) + 1.8379
# If we represent likelihood in m^(-1):
# out = 0.5 * torch.pow(ohr, 2) * (torch.pow(sigX, 2) * torch.pow(x - muX, 2) + torch.pow(sigY, 2) * torch.pow(y - muY, 2) - 2 * rho * torch.pow(sigX, 1) * torch.pow(sigY, 1) * (x - muX) * (y - muY)) - torch.log(sigX * sigY * ohr) + 1.8379 - 0.5160
acc[:, :, 0] = out
acc = acc * op_mask[:, :, 0:1]
if avg_along_time:
lossVal = torch.sum(acc[:, :, 0]) / torch.sum(op_mask[:, :, 0])
return lossVal
else:
lossVal = torch.sum(acc[:,:,0], dim=1)
counts = torch.sum(op_mask[:, :, 0], dim=1)
return lossVal,counts
## Batchwise MSE loss, uses mask for variable output lengths
def maskedMSE(y_pred, y_gt, mask):
acc = torch.zeros_like(mask)
muX = y_pred[:,:,0]
muY = y_pred[:,:,1]
x = y_gt[:,:, 0]
y = y_gt[:,:, 1]
out = torch.pow(x-muX, 2) + torch.pow(y-muY, 2)
acc[:,:,0] = out
acc[:,:,1] = out
acc = acc*mask
lossVal = torch.sum(acc)/torch.sum(mask)
return lossVal
## MSE loss for complete sequence, outputs a sequence of MSE values, uses mask for variable output lengths, used for evaluation
def maskedMSETest(y_pred, y_gt, mask):
acc = torch.zeros_like(mask)
muX = y_pred[:, :, 0]
muY = y_pred[:, :, 1]
x = y_gt[:, :, 0]
y = y_gt[:, :, 1]
out = torch.pow(x - muX, 2) + torch.pow(y - muY, 2)
acc[:, :, 0] = out
acc[:, :, 1] = out
acc = acc * mask
lossVal = torch.sum(acc[:,:,0],dim=1)
counts = torch.sum(mask[:,:,0],dim=1)
return lossVal, counts
## Helper function for log sum exp calculation:
def logsumexp(inputs, dim=None, keepdim=False):
if dim is None:
inputs = inputs.view(-1)
dim = 0
s, _ = torch.max(inputs, dim=dim, keepdim=True)
outputs = s + (inputs - s).exp().sum(dim=dim, keepdim=True).log()
if not keepdim:
outputs = outputs.squeeze(dim)
return outputs