-
Notifications
You must be signed in to change notification settings - Fork 1
/
my_dcgan.py
147 lines (117 loc) · 5.54 KB
/
my_dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#Deep convolutional GANs
#Importing the Libraries
from _future_ import print_function
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
#Setting the hyper-parameters
batchSize=64
imageSize=64
#Creating the transformations
transform = transforms.Compose([transforms.Scale(imageSize), transforms.ToTensor() , transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),])
# Loading the dataset
dataset = dset.CIFAR10(root = './data', download = True, transform = transform) # We download the training set in the ./data folder and we apply the previous transformations on each image.
dataloader = torch.utils.data.DataLoader(dataset, batch_size = batchSize, shuffle = True, num_workers = 2) # We use dataLoader to get the images of the training set batch by batch.
# Defining the weights_init function that takes as input a neural network m and that will initialize all its weights.
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
#Defining the Generator
class G(nn.Module):
def _init__(self):
super(G, self).__init__()#to activate inheritance
self.main = nn.Sequential(
nn.ConvTranspose2d(100,512,4,1,0, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512,256,4,2,1,bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256,128,4,2,1,bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128,64,4,2,1,bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64,3,4,2,1,bias=False),
nn.Tanh() #output value -1 to +1
)
def forward(self, input):#input=noise
output = self.main(input)
return output
#creating the generator
netG = G()
netG.apply(weights_init)
#Defining the Discriminator
class D(nn.Module):
def _init__(self):
super(D,self).__init__()
self.main = nn.Sequential(
nn.Conv2d(3,64,4,2,1,bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64,128,4,2,1,bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2,inplace=True),
nn.Conv2d(128,256,4,2,1,bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2,inplace=True),
nn.Conv2d(256,512,4,2,1,bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2,inplace=True),
nn.Conv2d(512,1,4,1,0,bias=False),
nn.Sigmoid() #returns value between 0 to 1
)
def forward(self,input):#input=img created by generator
output = self.main(input)
return output.view(-1)#flattening the result of convolution so all the elements along output are along the same direction ,dimension coressponds to batch size
#Creating the descriptor
netD = D()
netD.apply(weights_init)
#Training the DCGANs
criterion = nn.BCELoss()
optimizerD = optim.Adam(netD.parameters(), lr=0.002, betas=(0.5,0.999))
optimizerG = optim.Adam(netG.parameters(), lr=0.002, betas=(0.5,0.999))
for epoch in range(25):
for i, data in enumerate(dataloader, 0):#data=mini batch compose of real imgaes & labels=dc
#1st Step: updating the wt.s of the neural network of the discriminator
netD.zero_grad()
#Training the discriminator with a real image of the dataset
real, _ = data#real=tensor of image
input = Variable(real)
target = Variable(torch.ones(input.size()[0]))
output = netD(input)
errD_real = criterion(output,target)
#Training the discriminator with a fake image generated by the generator
noise = Variable(torch.randn(input.size()[0], 100, 1, 1))
fake = netG(noise)
target = Variable(torch.zeros(input.size()[0]))
output = netD(fake.detach())
errD_fake = criterion(output,target)
#Bacpropogating the total error
errD = errD_real + errD_fake
errD.backward()
optimizerD.step()
#2nd Step:Updating the wts of the neural network of the generator
netG.zero_grad()
target = Variable(torch.zeros(input.size()[0]))
output = netD(fake)
errG = criterion(output,target)
errG.backward()
optimizerG.step()
#3rd Step:Printing the loses and saving the real images and the genrated images
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f'% (epoch,25,i,len(dataloader),errD.data[0],errG.data[0]))
if i % 100 == 0:
vutils.save_image(real , '%s/real_samples.png' % "./results",normalize=True)
fake = netG(noise)
vutils.save_image(fake.data , '%s/fake_samples_epoch_%03d.png' % ("./results",epoch),normalize=True)
#8hrs