-
Notifications
You must be signed in to change notification settings - Fork 28
/
run_rollout.py
138 lines (103 loc) · 3.97 KB
/
run_rollout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from montecarlo.node import Node
from montecarlo.montecarlo import MonteCarlo
from lang import can_be_solution
from lang import score_func as uncached_score_func
from common_cache import create_cached_func
score_func, cache_stats, reset_cache = create_cached_func(uncached_score_func)
from common_interactive import diffprompt
from prompts import prompt, min_lines, expansion_count, check_func
from common import limit_depth, max_completion_depth, limit_tokens
from common_stats import stats
import llm
import time
import common_wandb
from cmdline import args
if args.use_wandb:
import wandb
node_dups_counter = 0
def generate_rollout(text, montecarlo):
pre_gen_time = time.time()
pre_gen_toks = llm.token_counter
text = llm.generate_full(text)
score = score_func(text)
if score is not None:
if score >= 0 and can_be_solution(text, min_lines, check_func):
montecarlo.solution = text
else:
score = -1 # Note: we can only score -1 or find a successful solution
gen_stat = common_wandb.compute_gen_stat(pre_gen_time, pre_gen_toks, text, 0)
if args.use_wandb:
gen_stat = {f"rollout/{k}": v for k, v in gen_stat.items()}
wandb.log(gen_stat)
return score
# TODO: maybe this makes more sense if we use a fixed number of children instead of widen nodes
# The issue now is that widen nodes have v=0 wich is always better than other children
# As a result, the tree search is never really used unless the exploration bonus is very large
# and the widen value is very small.
def generate_complete(text, montecarlo, current_completion_depth=1):
if current_completion_depth >= max_completion_depth:
return None, current_completion_depth
prev = text
texts = llm.generate(text, 1)
text = texts[0]
score = score_func(text)
print(diffprompt(prev, texts))
if score is not None:
if score >= 0 and can_be_solution(text, min_lines, check_func):
montecarlo.solution = text
return text, current_completion_depth
def child_finder(node, montecarlo):
if limit_depth(node):
return
pre_gen_time = time.time()
pre_gen_toks = llm.token_counter
text, depth = generate_complete(node.state, montecarlo)
gen_stat = common_wandb.compute_gen_stat(pre_gen_time, pre_gen_toks, text, depth)
child = Node(text)
if node.is_widen_node:
node.visits += 1
node.parent.add_child(child)
# Check siblings for duplicates
for c in node.parent.children:
if c.state == text:
global node_dups_counter
node_dups_counter += 1
print("found string-duplicated node:")
print(text)
else:
node.add_child(child)
# Update values from rollout
value = generate_rollout(text, montecarlo)
child.update_win_value(value)
child.update_policy_value(1)
# Add widen node
widen = Node(text)
widen.is_widen_node = True
child.add_child(widen)
widen.update_policy_value(args.widen_policy_value)
common_wandb.log_tree(montecarlo, gen_stat, node)
# Check on token limit after this generation
if limit_tokens():
if montecarlo.solution is None:
montecarlo.solution = "Token limit reached"
print("Token limit reached, no solution found")
def main(mins_timeout=None, prompt=prompt):
init_time = time.time()
montecarlo = MonteCarlo(Node(prompt), mins_timeout)
# Add widen node to root
widen = Node(prompt)
widen.is_widen_node = True
montecarlo.root_node.add_child(widen)
widen.update_policy_value(args.widen_policy_value)
# Update child finder
montecarlo.child_finder = child_finder
# Run search
montecarlo.simulate(expansion_count)
common_wandb.compute_summary(montecarlo, node_dups_counter, init_time)
print("CHOSEN SOLUTION")
print(montecarlo.solution)
stats(montecarlo)
print("cache stats", cache_stats)
return cache_stats
if __name__ == "__main__":
main()