-
Notifications
You must be signed in to change notification settings - Fork 1
/
weathering_utils.py
583 lines (485 loc) · 22.8 KB
/
weathering_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 19 13:41:10 2021
@author: Ludovic Lepers
"""
import evaporation as ev
import dissolution as di
import photooxidation as ph
import biodegradation as bi
import emulsification as em
import volatilization as vo
import oil_utils as otl
import matplotlib.pyplot as plt
import numpy as np
import copy
import math
import csv
MAX_EVAPORATIVE_TEMP = 573.15
def to_half_life(days):
"""
Return the constant [1/s] from the half life length [day]
"""
s= 24 * 3600 * days
return -math.log(1/2)/s
def create_csv(mix, matrix, name, path = ""):
"""
Create a csv file with the results of the simulation
params
------
mix : mix represented by the matrix
matrix : matrix ordered following (with the last row of comp being the sum):
time [s]
slick [m³]
evaporated [m³]
dissolved [m³]
biodegraded [m³]
photooxided [m³]
emulsified [m³]
name: name of the file (without .csv)
path: path of the file if not in the same directory as the script
"""
ind_tot = len(mix.list_component)
with open(path+name+'.csv','w') as csv_file:
csv_writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
csv_writer.writerow(['time [s]', 'remaining [m³]','evaporated [m³]','dissolved [m³]',
'biodegraded [m³]','photooxided [m³]','emulsified [m³]'])
for i in range(len(matrix[:,0,0])):
csv_writer.writerow([matrix[i,0,ind_tot],matrix[i,1,ind_tot],matrix[i,2,ind_tot],
matrix[i,3,ind_tot],matrix[i,4,ind_tot],matrix[i,5,ind_tot],
matrix[i,6,ind_tot]])
def plot_matrix_mix(mix, matrix, title_add = "", percent = False):
"""
Plot the matrix
Parameters
----------
mix : mix represented by the matrix
matrix : matrix ordered following (with the last row of comp being the sum):
time [s]
slick [m³]
evaporated [m³]
dissolved [m³]
biodegraded [m³]
photooxided [m³]
emulsionned [m³]
title_add: string which will be added to the title of the plot
percent : if True, show the ordinate in percent, by default False
"""
ind_tot = len(mix.list_component)
sim_length = matrix[len(matrix)-1,0,0]
sum = (matrix[0,1,ind_tot]+matrix[0,2,ind_tot]+matrix[0,3,ind_tot]
+matrix[0,4,ind_tot]+matrix[0,5,ind_tot]+matrix[0,6,ind_tot])
if percent:
plt.plot(matrix[:,0,0]/3600,matrix[:,1,ind_tot]/sum*100)
plt.plot(matrix[:,0,0]/3600,matrix[:,2,ind_tot]/sum*100)
plt.plot(matrix[:,0,0]/3600,matrix[:,3,ind_tot]/sum*100)
plt.plot(matrix[:,0,0]/3600,matrix[:,4,ind_tot]/sum*100)
plt.plot(matrix[:,0,0]/3600,matrix[:,5,ind_tot]/sum*100)
plt.plot(matrix[:,0,0]/3600,matrix[:,6,ind_tot]/sum*100)
plt.ylabel('% (Volume)')
plt.ylim([0, 100])
#plt.ylim([0, matrix[0,1,ind_tot]]/sum*100)
else :
plt.plot(matrix[:,0,0]/3600,matrix[:,1,ind_tot])
plt.plot(matrix[:,0,0]/3600,matrix[:,2,ind_tot])
plt.plot(matrix[:,0,0]/3600,matrix[:,3,ind_tot])
plt.plot(matrix[:,0,0]/3600,matrix[:,4,ind_tot])
plt.plot(matrix[:,0,0]/3600,matrix[:,5,ind_tot])
plt.plot(matrix[:,0,0]/3600,matrix[:,6,ind_tot])
plt.ylabel('Volume [m³]')
plt.ylim([0, matrix[0,1,ind_tot]])
plt.xlim([0, sim_length/3600])
plt.xlabel('Time[h]')
plt.legend(['Remaining','Evaporated','Dissolved','Biodegradation','Photooxidation','Emulsion'])
plt.title(title_add+mix.name)
plt.show()
def compute_weathering(mix, temperature, wind_speed, sim_length, dt, water_volume,
slick_thickness, fix_area=None, apply_evaporation = 1,
apply_emulsion = 0, apply_volatilization = 0, apply_dissolution = 0,
wave_height = 0, vertical_diff = 1e-3, stability_class='C',
current_speed = 0, speed_for_dis=1e-3, start_dis = False):
"""
Return a matrix with the amount for each timestep for each process.
The mix is consider to be the remaining amount as slick. All the
component with an ebulition point above or equals to 1000K will not
evaporate.
The matrix contains for each timestep and each pseudo component + the sum
time [s] (same for all component)
slick [m³]
evaporated [m³]
dissolved [m³]
biodegraded [m³]
photooxided [m³]
emulsionned [m³]
Parameters
----------
mix : Mix to weather. Be carefull, it will be modified!
temperature : Temperature [K]
wind_speed : Wind speed [m/s]
sim_length : Length of the simulation [s]
dt : Length of an iteration [s]
water_volume : Amount of water in which the mix is dissolved [m³]
slick_thickness : Slick thickness [m], computed from area if it is not None
fix_area : Vector with the size of the slick area [m²] at each timestep,
if none, it will be computed from the slick_thickness and the volume.
The default is None. Can be a scalar which is then transform into
a vector
stability_class : Pasquill stability index. The default is 'F'.
apply_evaporation : 0 means no evaporation. If 1, use oiltrans for evaporation,
if 2 it will use ALOHA, if 3 it will use Fingas. The default is 1.
apply_emulsion : 0 means no emulsion, 1 means emulsion as OSERIT, 2 as
Mackay. The default is 0.
apply_volatilization : 0 means no volatilization, 1 means volatilization,
The default is 0.
apply_dissolution : 0 means no dissolution, 1 means dissolution,
The default is 0.
wave_height : Wave height [m]
current_speed : Current speed [m/s]
speed_for_dis: the speed of the molecule for the dissolution[m/s]
start_dis: if True, will start dissolved and not in slick
"""
#In case of an area which vary trought time
if type(fix_area) != list and type(fix_area) != np.ndarray:
if fix_area != None:
area = fix_area
fix_area = []
for i in range(0, int(sim_length/dt)):
fix_area.append(area)
time_step_amount = int(sim_length / dt)
matrix = np.zeros((int(time_step_amount),7, len(mix.list_component)+1))
#allocation of the components in the matrix
for i in range(0, len(mix.list_component)):
if start_dis :
matrix[0,3,i]=mix.get_comp(i).amount
mix.get_comp(i).amount = 0
else:
matrix[0,1,i]=mix.get_comp(i).amount
if start_dis :
matrix[0,3,len(mix.list_component)]=sum(matrix[0,3])
else:
matrix[0,1,len(mix.list_component)]=sum(matrix[0,1])
if apply_emulsion > 0:
max_wat = mix.max_water
for i in range(1,time_step_amount):
matrix[i,0,:] = i * dt
ev_fl = np.zeros(len(mix.list_component)+1)
dis_fl = np.zeros(len(mix.list_component)+1)
bio_fl = np.zeros(len(mix.list_component)+1)
phot_fl = np.zeros(len(mix.list_component)+1)
vol_fl = np.zeros(len(mix.list_component)+1)
emul_fl = np.zeros(len(mix.list_component)+1)
if fix_area is not None:
area = fix_area[i]
slick_thickness = mix.get_prop(temperature).amount / area
else:
area = mix.get_prop(temperature).amount / slick_thickness
length = 2 * math.sqrt(area / math.pi)
if mix.get_prop(temperature).amount> 0:
schmdt_nmbr_air = ev.schmdt_nmbr_MW(mix.get_prop(temperature).molar_weight)#the one of chemmap can be used
for j in range(0, len(mix.list_component)):
comp = mix.get_comp(j)
comp_area = comp.amount / matrix[i-1,1,len(mix.list_component)]* area
if comp.amount > 0 : #for the volatilization
fract = mix.get_molar_fract(comp)
if comp.boiling_T < 1000 and ev.find_vapor_pressure(comp, temperature, MAX_EVAPORATIVE_TEMP) > 0:
#evaporation pseudo component
flux = 0
#OILTRANS
if apply_evaporation == 1 :
p_oil = ev.find_vapor_pressure(comp, temperature, MAX_EVAPORATIVE_TEMP)
molar_v = comp.molar_volume
#k from mw
k_evp = ev.mass_transfer_coefficient_OILTRANS(wind_speed, length,
schmdt_nmbr_air)
flux = ev.evap_volume_OILTRANS(k_evp, area, p_oil,
molar_v,temperature,
molar_fraction = fract)
#ALOHA
elif apply_evaporation == 2:
n = ev.pasquill_stability(stability_class)
wind_friction = ev.wind_friction_velocity(wind_speed, n)
Re = ev.roughness_reynolds(wind_friction)
kc = ev.graham_law(comp.molar_weight)
sc = ev.schmdt_nmbr_air(kc)
k = ev.mass_transfer_coefficient_ALOHA(length, Re, sc, n)
cs = ev.vapor_phase_sat_conc(comp.molar_weight,
ev.find_vapor_pressure(comp, temperature,
MAX_EVAPORATIVE_TEMP), temperature)
flux = (ev.evap_mass_flux_ALOHA(cs, wind_friction, k)
* comp_area / comp.density)
flux = flux * dt
if comp.amount < flux:
flux = comp.amount
comp.amount -= flux
ev_fl[j] = flux
#dissolution
if apply_dissolution:
if (comp.solubility is not None
and comp.molar_weight is not None):
Dc = di.diffusion_coefficient(comp.molar_volume)
schmdt_nmbr_water = ev.schmdt_nmbr(Dc)
#for surface
Sh = di.sherwood_slick(schmdt_nmbr_water, wind_speed, length)
k = di.mass_transfer_coefficient_HNS(Sh, Dc,length)
#for subsurface droplet
#d = 10**-5
#Sh = di.sherwood_droplet(schmdt_nmbr_water,0.001,d)
#k = di.mass_transfer_coefficient_HNS(Sh, Dc,d)
#k = di.mass_transfer_coefficient_HNS_Fern(wind_speed, schmdt_nmbr_water)
conc = matrix[i-1,3,j]/(water_volume*comp.molar_volume)
flux = di.molar_flux_HNS(k, comp_area, comp.solubility / comp.molar_weight,
conc,fract)
flux = flux * comp.molar_volume *dt
if comp.amount < flux:
flux = comp.amount
comp.amount -= flux
dis_fl[j] = flux
#biodegradation
if comp.h_l_biod is not None:
flux = bi.simple_half_live(matrix[i-1,3,j], comp.h_l_biod, dt)
if comp.amount < flux:
flux = comp.amount
comp.amount -= flux
bio_fl[j]=flux
#photooxidtion
if comp.h_l_phot is not None:
flux = ph.simple_half_live(comp.amount, comp.h_l_phot, dt)
if comp.amount < flux:
flux = comp.amount
comp.amount -= flux
phot_fl[j]=flux
#evaporation fingas
if apply_evaporation == 3:
c1 = mix.fingas1
c2 = mix.fingas2
fract = ev.evap_fract_time_fingas(True, c1, matrix[i,0,0], temperature,c2) /100
flux = fract * matrix[0,1,len(mix.list_component)] - matrix[i-1,2,len(mix.list_component)]
if mix.get_prop(temperature).amount < flux:
flux = mix.get_prop(temperature).amount
ev_fl[0:len(mix.list_component)] = -mix.add_amount(-flux)
#emulsion: traited on all at once
if apply_emulsion > 0 and mix.get_prop(temperature).amount > 0:
#OSERIT
if apply_emulsion == 1:
remaining = em.volume_OSERIT(mix.get_prop(temperature).amount,wave_height, mix.K_em, dt,max_wat_cont = max_wat)
flux = mix.get_prop(temperature).amount-remaining
if mix.get_prop(temperature).amount < flux:
flux = mix.get_prop(temperature).amount
emul_fl[0:len(mix.list_component)] = -mix.add_amount(-flux)
#MACKAY
elif apply_emulsion == 2:
wat_amount = matrix[i-1,6,len(mix.list_component)] /(1-max_wat)*max_wat
wat_fract = wat_amount / (wat_amount+ mix.get_prop(temperature).amount +
matrix[i-1,6,len(mix.list_component)])
eml_rate = em.wat_fract_MACKAY(wind_speed, wat_fract, max_wat)
eml_wat = eml_rate * dt
flux = (eml_wat/max_wat * (1-max_wat)
* ( matrix[i-1,6,len(mix.list_component)] + mix.get_prop(temperature).amount))
if mix.get_prop(temperature).amount < flux:
flux = mix.get_prop(temperature).amount
emul_fl[0:len(mix.list_component)] = -mix.add_amount(-flux)
#volatilization (after because comp.amount can be ==0)
if apply_volatilization > 0:
for j in range(0, len(mix.list_component)):
comp = mix.get_comp(j)
if matrix[i-1,3,j] > 0:
if (comp.get_partial_P(temperature) is not None
and comp.solubility is not None
and comp.molar_weight is not None):
flux = 0
if apply_volatilization == 1:
henry = vo.henry(comp.get_partial_P(temperature), comp.solubility,
comp.molar_weight)
if henry > 3e-7:
nd_henry = vo.nondimensional_henry(henry, temperature)
kl = vo.liquid_phase_exchange_coef(comp.molar_weight, wind_speed)
kg = vo.gas_phase_exchange_coef(comp.molar_weight, wind_speed, current_speed)
K = vo.mass_transfer_coefficient(nd_henry, kg, kl)
conc = matrix[i-1,3,j] * comp.density/(water_volume)
flux = vo.mass_flux_lyman(K, conc, henry, comp.molar_weight)
flux = flux * dt * area / comp.get_density(temperature)
elif apply_volatilization == 2:
henry = vo.henry_chemmap(comp.molar_weight, comp.solubility,
comp.get_partial_P(temperature))
if henry >= 3e-7:
k = vo.volatilization_coef_chemmap(comp.molar_weight,
henry, temperature)
rate = vo.volatilization_rate_chemmap(k, matrix[i-1,3,j], 1e-3, dt)
flux = rate*dt / comp.get_density(temperature)
if flux > matrix[i-1,3,j]:
flux = matrix[i-1,3,j]
vol_fl[j] = flux
matrix[i,1,0:len(mix.list_component)] = mix.get_array_amount()
matrix[i,2] = ev_fl + matrix[i-1,2] + vol_fl
matrix[i,3] = dis_fl + matrix[i-1,3] - vol_fl
matrix[i,4] = bio_fl + matrix[i-1,4]
matrix[i,5] = phot_fl + matrix[i-1,5]
matrix[i,6] = emul_fl + matrix[i-1,6]
for j in range(1,7):
matrix[i,j,len(mix.list_component)] = sum(matrix[i,j,0:len(mix.list_component)])
return matrix
def return_oils(amount, temperature):
"""
Returns a list of some oils
Parameters
----------
amount : Amount of each mix [m³]
temperature : Temperature [K]
"""
oils_pseudo_comp = []
brent_blend = otl.mix('BRENT BLEND')
brent_blend_cut_T = [40,80,100,120,150,160,180,200,250,300,350,400,500,600,700]
brent_blend_fract = [3.0,4.0,5.0,19.0,22.0,25.0,29.0,32.0,42.0,52.0,62.0,70.0,85.0,95.0,99.0]
brent_blend.generate_component_cut(brent_blend_cut_T, brent_blend_fract, amount)
brent_blend.density = 835
brent_blend.K_em = 20
brent_blend.visco = 4.5
brent_blend.add_Fingas(3.39, 0.048)
oils_pseudo_comp.append(brent_blend)
arabian = otl.mix('ARABIAN')
arabian_cut_T = [69,100,128,151,172,198,213,238,261,282,304,329,351,373,398]
arabian_fract = [5.0,10.0,15.0,20.0,25.0,30.0,35.0,40.0,45.0,50.0,55.0,60.0,65.0,70.0,75.0]
arabian.density = 863
arabian.add_Fingas(1.89)
arabian.K_em = 100
arabian.visco = 40
arabian.generate_component_cut(arabian_cut_T, arabian_fract, amount)
oils_pseudo_comp.append(arabian)
alba = otl.mix('ALBA')
alba_cut_T = [20,149,204,260,277,290,303,311,322,333,343,385,454,485,534]
alba_fract = [1.0,4.0,9.0,11.0,14.0,17.0,19.0,21.0,23.0,26.0,28.0,36.0,50.0,55.0,67.0]
alba.density = 934
alba.add_Fingas(0.450)
alba.K_em = 20
alba.visco = 463.5
alba.generate_component_cut(alba_cut_T, alba_fract, amount)
oils_pseudo_comp.append(alba)
boscan = otl.mix('BOSCAN')
boscan_cut_T = [91,230,287,350,369,384]
boscan_fract = [1.0,5.0,10.0,20.0,30.0,40.0]
boscan.density = 999
boscan.add_Fingas(-0.15, 0.013)
boscan.K_em = 1e-4
boscan.visco = 3
boscan.generate_component_cut(boscan_cut_T, boscan_fract, amount)
oils_pseudo_comp.append(boscan)
for oil in oils_pseudo_comp:
add_oil_properties(oil, temperature)
return oils_pseudo_comp
def return_chemicals(amount):
"""
Return a list of some chemicals
"""
chemicals_list = []
butyl_acetate = otl.mix('Butyl acetate')
ba = otl.component('Bulk',amount)#HNS MS 20°C
ba.density = 881
ba.molar_weight = 0.1162
ba.boiling_T = 126+273.15
ba.partial_P = 1990
ba.ref_T_Clau = 25+273
ba.vap_enthalpie = 377582
ba.solubility = 5670e-3
ba.h_l_biod = to_half_life(10)
butyl_acetate.add_component(ba)
chemicals_list.append(butyl_acetate)
butyl_acrylate = otl.mix('Butyl acrylate')
bay = otl.component('Bulk',amount)#HNS MS 20°C
bay.density = 900
bay.molar_weight = 0.12817
bay.boiling_T = 148.8+273.15
bay.partial_P = 727
bay.ref_T_Clau = 25+273
bay.vap_enthalpie = 458981 #by computing from the partial pressure at 20 and 25
bay.solubility = 1440e-3
bay.h_l_biod = to_half_life(10)
bay.h_l_phot = to_half_life(0.0138)
butyl_acrylate.add_component(bay)
chemicals_list.append(butyl_acrylate)
#2ethylhexyl acrylate
ethylhexyl_acrylate = otl.mix('2-ethylhexyl acrylate')
eay = otl.component('Bulk',amount)#HNS MS 20°C
eay.density = 890
eay.molar_weight = 0.18428
eay.boiling_T = 216+273.15
eay.partial_P = 24
eay.ref_T_Clau = 25+273
eay.vap_enthalpie = 397003
eay.solubility = 21e-3
eay.h_l_biod = to_half_life(10)
ethylhexyl_acrylate.add_component(eay)
chemicals_list.append(ethylhexyl_acrylate)
heptane = otl.mix('Heptane')
hep = otl.component('Bulk',amount)#HNS MS 20°C
hep.density = 680
hep.molar_weight = 0.1002
hep.boiling_T = 98+273.15
hep.partial_P = 6133
hep.ref_T_Clau = 25+273
hep.vap_enthalpie = 364960
hep.solubility = 0.48e-3
hep.h_l_biod = to_half_life(10)
heptane.add_component(hep)
chemicals_list.append(heptane)
toluene = otl.mix('Toluene')
tol = otl.component('Bulk',amount)#HNS MS 20°C
tol.density = 868.3
tol.molar_weight = 0.09215
tol.boiling_T = 110.58+273.15
tol.partial_P = 3800
tol.ref_T_Clau = 25+273
tol.vap_enthalpie = 412480
tol.solubility = 110e-3
tol.h_l_biod = to_half_life(30)
tol.mu_max = 1.5e-4
tol.ks = 1.96e-3
tol.Y_oil = 1.22
toluene.add_component(tol)
chemicals_list.append(toluene)
methanol = otl.mix('Methanol')
meth = otl.component('Bulk',amount)#HNS MS 20°C
meth.density = 791.4
meth.molar_weight = 0.032042
meth.boiling_T = 64.6+273.15
meth.partial_P = 12265
meth.ref_T_Clau = 20+273
meth.vap_enthalpie = 1168154
meth.solubility = 10000 #at 0% of salt
methanol.add_component(meth)
chemicals_list.append(methanol)
pentane = otl.mix('Pentane')
pen = otl.component('Bulk',amount)#HNS MS 20°C
pen.density = 626.2
pen.molar_weight = 0.072149
pen.boiling_T = 36.06+273.15
pen.partial_P = 57328
pen.ref_T_Clau = 20+273
pen.vap_enthalpie = 366190
pen.solubility = 27e-3
pentane.add_component(pen)
chemicals_list.append(pentane)
acetone = otl.mix('Acetone')
ace = otl.component('Bulk',amount)#HNS MS 20°C
ace.density = 790
ace.molar_weight = 0.05808
ace.boiling_T = 56.2+273.15
ace.partial_P = 30930
ace.ref_T_Clau = 25+273
ace.vap_enthalpie = 533574
ace.solubility = 790 #at 0% of salt
tol.h_l_biod = to_half_life(10)
tol.h_l_phot = to_half_life(1.67)
acetone.add_component(ace)
chemicals_list.append(acetone)
xylene = otl.mix('Xylene')
xyl = otl.component('Bulk',amount)#HNS MS 20°C
xyl.density = 870
xyl.molar_weight = 0.10616
xyl.boiling_T = 140.2+273.15
xyl.partial_P = 1070
xyl.ref_T_Clau = 25+273
xyl.vap_enthalpie = 401733
xyl.solubility = 100e-3
xylene.add_component(xyl)
chemicals_list.append(xylene)
return chemicals_list