forked from patil-suraj/question_generation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare_data.py
204 lines (162 loc) · 6.73 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import logging
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import torch
import nlp
from transformers import T5Tokenizer, BartTokenizer, HfArgumentParser
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task: str = field(
metadata={"help": "Which task 'qa', 'qg', 'e2e_qg', 'ans_ext', 'multi'. 'multi' means 'qa', 'qg', 'ans_ext' tasks"},
)
model_type: str = field(metadata={"help": "One of 't5', 'bart'"})
dataset_path: Optional[str] = field(
default="data/squad_multitask",
metadata={"help": "Path for dataset directory"},
)
train_file_name: Optional[str] = field(
default=None,
metadata={"help": "name for cached train dataset"},
)
valid_file_name: Optional[str] = field(
default=None,
metadata={"help": "name for cached valid dataset"},
)
valid_for_qg_only: bool = field(
default=False,
metadata={"help": "For multitask dataset valid split should contain only qg task or all tasks."}
)
qg_format: Optional[str] = field(
default='highlight_qg_format',
metadata={"help": "How to format inputs for que generation, 'highlight_qg_format' or 'prepend_qg_format'"},
)
max_source_length: Optional[int] = field(
default=512,
metadata={"help": "Max input length for the source text"},
)
max_target_length: Optional[int] = field(
default=32,
metadata={"help": "Max input length for the target text"},
)
class DataProcessor:
def __init__(self, tokenizer, model_type="t5", max_source_length=512, max_target_length=32):
self.tokenizer = tokenizer
self.max_source_length = max_source_length
self.max_target_length = max_target_length
self.model_type = model_type
self.hl_token = "<hl>"
if model_type == "t5":
self.sep_token = "<sep>"
elif model_type == "bart":
self.sep_token = "<sep>"
else:
self.sep_token = "[SEP]"
def process(self, dataset):
if self.model_type == "t5":
dataset = dataset.map(self._add_eos_examples)
dataset = dataset.map(self._add_special_tokens)
dataset = dataset.map(self._convert_to_features, batched=True)
return dataset
def _add_eos_examples(self, example):
example['source_text'] = example['source_text'] + " </s>"
example['target_text'] = example['target_text'] + " </s>"
return example
def _add_special_tokens(self, example):
example['source_text'] = example['source_text'].replace("{hl_token}", self.hl_token)
example['target_text'] = example['target_text'].replace("{sep_token}", self.sep_token)
return example
# tokenize the examples
def _convert_to_features(self, example_batch):
source_encoding = self.tokenizer.batch_encode_plus(
example_batch['source_text'],
max_length=self.max_source_length,
padding='max_length',
pad_to_max_length=True,
truncation=True,
)
target_encoding = self.tokenizer.batch_encode_plus(
example_batch['target_text'],
max_length=self.max_target_length,
padding='max_length',
pad_to_max_length=True,
truncation=True,
)
encodings = {
'source_ids': source_encoding['input_ids'],
'target_ids': target_encoding['input_ids'],
'attention_mask': source_encoding['attention_mask'],
}
return encodings
def filter_qa(example):
return example['task'] == 'qa'
def filter_qg(example):
return example['task'] == 'qg'
def filter_e2e_qg(example):
return example['task'] == 'e2e_qg'
def filter_ans_ext(example):
return example['task'] == 'ans_ext'
def filter_multi(example):
return example['task'] != 'e2e_qg'
TASK_TO_FILTER_FN = {
'qa': filter_qa,
'qg': filter_qg,
'e2e_qg': filter_e2e_qg,
'ans_ext': filter_ans_ext,
'multi': filter_multi
}
def main():
parser = HfArgumentParser((DataTrainingArguments,))
data_args = parser.parse_args_into_dataclasses()[0]
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO
)
if data_args.model_type == 't5':
tokenizer = T5Tokenizer.from_pretrained("t5-base")
else:
tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
tokenizer.add_tokens(['<sep>', '<hl>'])
train_dataset = nlp.load_dataset(data_args.dataset_path, name=data_args.qg_format, split=nlp.Split.TRAIN)
valid_dataset = nlp.load_dataset(data_args.dataset_path, name=data_args.qg_format, split=nlp.Split.VALIDATION)
processor = DataProcessor(
tokenizer,
model_type=data_args.model_type,
max_source_length=data_args.max_source_length,
max_target_length=data_args.max_target_length
)
train_dataset = train_dataset.filter(TASK_TO_FILTER_FN[data_args.task])
if data_args.task == 'multi' and data_args.valid_for_qg_only:
logger.info("processing valid data only for qg task")
valid_dataset = valid_dataset.filter(filter_qg)
else:
valid_dataset = valid_dataset.filter(TASK_TO_FILTER_FN[data_args.task])
train_dataset = processor.process(train_dataset)
valid_dataset = processor.process(valid_dataset)
columns = ["source_ids", "target_ids", "attention_mask"]
train_dataset.set_format(type='torch', columns=columns)
valid_dataset.set_format(type='torch', columns=columns)
if data_args.train_file_name is None:
train_file_name = f"train_data_{data_args.task}_{data_args.qg_format}_{data_args.model_type}.pt"
train_path = os.path.join("data", train_file_name)
valid_file_name = f"valid_data_{data_args.task}_{data_args.qg_format}_{data_args.model_type}.pt"
valid_path = os.path.join("data", valid_file_name)
else:
train_path = os.path.join("data", data_args.train_file_name)
valid_path = os.path.join("data", data_args.valid_file_name)
torch.save(train_dataset, train_path)
logger.info(f"saved train dataset at {train_path}")
torch.save(valid_dataset, valid_path)
logger.info(f"saved validation dataset at {valid_path}")
tokenizer_path = f"{data_args.model_type}_qg_tokenizer"
if not os.path.exists(tokenizer_path):
os.mkdir(tokenizer_path)
tokenizer.save_pretrained(tokenizer_path)
logger.info(f"saved tokenizer at {tokenizer_path}")
if __name__ == "__main__":
main()