-
Notifications
You must be signed in to change notification settings - Fork 16
/
__init__.py
292 lines (242 loc) · 9 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import torch
import folder_paths
import comfy.sd
import comfy.model_management
current_device = "cuda:0"
def get_torch_device_patched():
global current_device
if (
not torch.cuda.is_available()
or comfy.model_management.cpu_state == comfy.model_management.CPUState.CPU
):
return torch.device("cpu")
return torch.device(current_device)
comfy.model_management.get_torch_device = get_torch_device_patched
class CheckpointLoaderMultiGPU:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"),),
"device": ([f"cuda:{i}" for i in range(torch.cuda.device_count())],),
}
}
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
CATEGORY = "loaders"
def load_checkpoint(self, ckpt_name, device):
global current_device
current_device = device
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
out = comfy.sd.load_checkpoint_guess_config(
ckpt_path,
output_vae=True,
output_clip=True,
embedding_directory=folder_paths.get_folder_paths("embeddings"),
)
return out[:3]
class UNETLoaderMultiGPU:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"unet_name": (folder_paths.get_filename_list("unet"),),
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e5m2"],),
"device": ([f"cuda:{i}" for i in range(torch.cuda.device_count())],),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_unet"
CATEGORY = "advanced/loaders"
def load_unet(self, unet_name, weight_dtype, device):
global current_device
current_device = device
dtype = None
if weight_dtype == "fp8_e4m3fn":
dtype = torch.float8_e4m3fn
elif weight_dtype == "fp8_e5m2":
dtype = torch.float8_e5m2
unet_path = folder_paths.get_full_path("unet", unet_name)
model = comfy.sd.load_unet(unet_path, dtype=dtype)
return (model,)
class VAELoaderMultiGPU:
@staticmethod
def vae_list():
vaes = folder_paths.get_filename_list("vae")
approx_vaes = folder_paths.get_filename_list("vae_approx")
sdxl_taesd_enc = False
sdxl_taesd_dec = False
sd1_taesd_enc = False
sd1_taesd_dec = False
sd3_taesd_enc = False
sd3_taesd_dec = False
for v in approx_vaes:
if v.startswith("taesd_decoder."):
sd1_taesd_dec = True
elif v.startswith("taesd_encoder."):
sd1_taesd_enc = True
elif v.startswith("taesdxl_decoder."):
sdxl_taesd_dec = True
elif v.startswith("taesdxl_encoder."):
sdxl_taesd_enc = True
elif v.startswith("taesd3_decoder."):
sd3_taesd_dec = True
elif v.startswith("taesd3_encoder."):
sd3_taesd_enc = True
if sd1_taesd_dec and sd1_taesd_enc:
vaes.append("taesd")
if sdxl_taesd_dec and sdxl_taesd_enc:
vaes.append("taesdxl")
if sd3_taesd_dec and sd3_taesd_enc:
vaes.append("taesd3")
return vaes
@staticmethod
def load_taesd(name):
sd = {}
approx_vaes = folder_paths.get_filename_list("vae_approx")
encoder = next(
filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes)
)
decoder = next(
filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes)
)
enc = comfy.utils.load_torch_file(
folder_paths.get_full_path("vae_approx", encoder)
)
for k in enc:
sd["taesd_encoder.{}".format(k)] = enc[k]
dec = comfy.utils.load_torch_file(
folder_paths.get_full_path("vae_approx", decoder)
)
for k in dec:
sd["taesd_decoder.{}".format(k)] = dec[k]
if name == "taesd":
sd["vae_scale"] = torch.tensor(0.18215)
sd["vae_shift"] = torch.tensor(0.0)
elif name == "taesdxl":
sd["vae_scale"] = torch.tensor(0.13025)
sd["vae_shift"] = torch.tensor(0.0)
elif name == "taesd3":
sd["vae_scale"] = torch.tensor(1.5305)
sd["vae_shift"] = torch.tensor(0.0609)
return sd
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"vae_name": (s.vae_list(),),
"device": ([f"cuda:{i}" for i in range(torch.cuda.device_count())],),
}
}
RETURN_TYPES = ("VAE",)
FUNCTION = "load_vae"
CATEGORY = "loaders"
# TODO: scale factor?
def load_vae(self, vae_name, device):
global current_device
current_device = device
if vae_name in ["taesd", "taesdxl", "taesd3"]:
sd = self.load_taesd(vae_name)
else:
vae_path = folder_paths.get_full_path("vae", vae_name)
sd = comfy.utils.load_torch_file(vae_path)
vae = comfy.sd.VAE(sd=sd)
return (vae,)
class ControlNetLoaderMultiGPU:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"control_net_name": (folder_paths.get_filename_list("controlnet"),),
"device": ([f"cuda:{i}" for i in range(torch.cuda.device_count())],),
}
}
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "load_controlnet"
CATEGORY = "loaders"
def load_controlnet(self, control_net_name, device):
global current_device
current_device = device
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
return (controlnet,)
class CLIPLoaderMultiGPU:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip_name": (folder_paths.get_filename_list("clip"),),
"type": (
["stable_diffusion", "stable_cascade", "sd3", "stable_audio"],
),
"device": ([f"cuda:{i}" for i in range(torch.cuda.device_count())],),
}
}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "advanced/loaders"
def load_clip(self, clip_name, device, type="stable_diffusion"):
global current_device
current_device = device
if type == "stable_cascade":
clip_type = comfy.sd.CLIPType.STABLE_CASCADE
elif type == "sd3":
clip_type = comfy.sd.CLIPType.SD3
elif type == "stable_audio":
clip_type = comfy.sd.CLIPType.STABLE_AUDIO
else:
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
clip_path = folder_paths.get_full_path("clip", clip_name)
clip = comfy.sd.load_clip(
ckpt_paths=[clip_path],
embedding_directory=folder_paths.get_folder_paths("embeddings"),
clip_type=clip_type,
)
return (clip,)
class DualCLIPLoaderMultiGPU:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip_name1": (folder_paths.get_filename_list("clip"),),
"clip_name2": (folder_paths.get_filename_list("clip"),),
"type": (["sdxl", "sd3", "flux"],),
"device": ([f"cuda:{i}" for i in range(torch.cuda.device_count())],),
}
}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "advanced/loaders"
def load_clip(self, clip_name1, clip_name2, type, device):
global current_device
current_device = device
clip_path1 = folder_paths.get_full_path("clip", clip_name1)
clip_path2 = folder_paths.get_full_path("clip", clip_name2)
if type == "sdxl":
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
elif type == "sd3":
clip_type = comfy.sd.CLIPType.SD3
elif type == "flux":
clip_type = comfy.sd.CLIPType.FLUX
clip = comfy.sd.load_clip(
ckpt_paths=[clip_path1, clip_path2],
embedding_directory=folder_paths.get_folder_paths("embeddings"),
clip_type=clip_type,
)
return (clip,)
NODE_CLASS_MAPPINGS = {
"CheckpointLoaderMultiGPU": CheckpointLoaderMultiGPU,
"UNETLoaderMultiGPU": UNETLoaderMultiGPU,
"VAELoaderMultiGPU": VAELoaderMultiGPU,
"ControlNetLoaderMultiGPU": ControlNetLoaderMultiGPU,
"CLIPLoaderMultiGPU": CLIPLoaderMultiGPU,
"DualCLIPLoaderMultiGPU": DualCLIPLoaderMultiGPU,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"CheckpointLoaderMultiGPU": "Load Checkpoint (Multi-GPU)",
"UNETLoaderMultiGPU": "Load Diffusion Model (Multi-GPU)",
"VAELoaderMultiGPU": "Load VAE (Multi-GPU)",
"ControlNetLoaderMultiGPU": "Load ControlNet Model (Multi-GPU)",
"CLIPLoaderMultiGPU": "Load CLIP (Multi-GPU)",
"DualCLIPLoaderMultiGPU": "DualCLIPLoader (Multi-GPU)",
}