forked from geopavlakos/hamer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
208 lines (172 loc) · 9.63 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from pathlib import Path
import torch
import argparse
import os
import cv2
import numpy as np
from hamer.configs import CACHE_DIR_HAMER
from hamer.models import HAMER, download_models, load_hamer, DEFAULT_CHECKPOINT
from hamer.utils import recursive_to
from hamer.datasets.vitdet_dataset import ViTDetDataset, DEFAULT_MEAN, DEFAULT_STD
from hamer.utils.renderer import Renderer, cam_crop_to_full
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
from vitpose_model import ViTPoseModel
import json
from typing import Dict, Optional
def main():
parser = argparse.ArgumentParser(description='HaMeR demo code')
parser.add_argument('--checkpoint', type=str, default=DEFAULT_CHECKPOINT, help='Path to pretrained model checkpoint')
parser.add_argument('--img_folder', type=str, default='images', help='Folder with input images')
parser.add_argument('--out_folder', type=str, default='out_demo', help='Output folder to save rendered results')
parser.add_argument('--side_view', dest='side_view', action='store_true', default=False, help='If set, render side view also')
parser.add_argument('--full_frame', dest='full_frame', action='store_true', default=True, help='If set, render all people together also')
parser.add_argument('--save_mesh', dest='save_mesh', action='store_true', default=False, help='If set, save meshes to disk also')
parser.add_argument('--batch_size', type=int, default=1, help='Batch size for inference/fitting')
parser.add_argument('--rescale_factor', type=float, default=2.0, help='Factor for padding the bbox')
parser.add_argument('--body_detector', type=str, default='vitdet', choices=['vitdet', 'regnety'], help='Using regnety improves runtime and reduces memory')
parser.add_argument('--file_type', nargs='+', default=['*.jpg', '*.png'], help='List of file extensions to consider')
args = parser.parse_args()
# Download and load checkpoints
download_models(CACHE_DIR_HAMER)
model, model_cfg = load_hamer(args.checkpoint)
# Setup HaMeR model
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = model.to(device)
model.eval()
# Load detector
from hamer.utils.utils_detectron2 import DefaultPredictor_Lazy
if args.body_detector == 'vitdet':
from detectron2.config import LazyConfig
import hamer
cfg_path = Path(hamer.__file__).parent/'configs'/'cascade_mask_rcnn_vitdet_h_75ep.py'
detectron2_cfg = LazyConfig.load(str(cfg_path))
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
for i in range(3):
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
detector = DefaultPredictor_Lazy(detectron2_cfg)
elif args.body_detector == 'regnety':
from detectron2 import model_zoo
from detectron2.config import get_cfg
detectron2_cfg = model_zoo.get_config('new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py', trained=True)
detectron2_cfg.model.roi_heads.box_predictor.test_score_thresh = 0.5
detectron2_cfg.model.roi_heads.box_predictor.test_nms_thresh = 0.4
detector = DefaultPredictor_Lazy(detectron2_cfg)
# keypoint detector
cpm = ViTPoseModel(device)
# Setup the renderer
renderer = Renderer(model_cfg, faces=model.mano.faces)
# Make output directory if it does not exist
os.makedirs(args.out_folder, exist_ok=True)
# Get all demo images ends with .jpg or .png
img_paths = [img for end in args.file_type for img in Path(args.img_folder).glob(end)]
# Iterate over all images in folder
for img_path in img_paths:
img_cv2 = cv2.imread(str(img_path))
# Detect humans in image
det_out = detector(img_cv2)
img = img_cv2.copy()[:, :, ::-1]
det_instances = det_out['instances']
valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > 0.5)
pred_bboxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()
pred_scores=det_instances.scores[valid_idx].cpu().numpy()
# Detect human keypoints for each person
vitposes_out = cpm.predict_pose(
img,
[np.concatenate([pred_bboxes, pred_scores[:, None]], axis=1)],
)
bboxes = []
is_right = []
# Use hands based on hand keypoint detections
for vitposes in vitposes_out:
left_hand_keyp = vitposes['keypoints'][-42:-21]
right_hand_keyp = vitposes['keypoints'][-21:]
# Rejecting not confident detections
keyp = left_hand_keyp
valid = keyp[:,2] > 0.5
if sum(valid) > 3:
bbox = [keyp[valid,0].min(), keyp[valid,1].min(), keyp[valid,0].max(), keyp[valid,1].max()]
bboxes.append(bbox)
is_right.append(0)
keyp = right_hand_keyp
valid = keyp[:,2] > 0.5
if sum(valid) > 3:
bbox = [keyp[valid,0].min(), keyp[valid,1].min(), keyp[valid,0].max(), keyp[valid,1].max()]
bboxes.append(bbox)
is_right.append(1)
if len(bboxes) == 0:
continue
boxes = np.stack(bboxes)
right = np.stack(is_right)
# Run reconstruction on all detected hands
dataset = ViTDetDataset(model_cfg, img_cv2, boxes, right, rescale_factor=args.rescale_factor)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)
all_verts = []
all_cam_t = []
all_right = []
for batch in dataloader:
batch = recursive_to(batch, device)
with torch.no_grad():
out = model(batch)
multiplier = (2*batch['right']-1)
pred_cam = out['pred_cam']
pred_cam[:,1] = multiplier*pred_cam[:,1]
box_center = batch["box_center"].float()
box_size = batch["box_size"].float()
img_size = batch["img_size"].float()
multiplier = (2*batch['right']-1)
scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
pred_cam_t_full = cam_crop_to_full(pred_cam, box_center, box_size, img_size, scaled_focal_length).detach().cpu().numpy()
# Render the result
batch_size = batch['img'].shape[0]
for n in range(batch_size):
# Get filename from path img_path
img_fn, _ = os.path.splitext(os.path.basename(img_path))
person_id = int(batch['personid'][n])
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
input_patch = input_patch.permute(1,2,0).numpy()
regression_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
out['pred_cam_t'][n].detach().cpu().numpy(),
batch['img'][n],
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
)
if args.side_view:
side_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
out['pred_cam_t'][n].detach().cpu().numpy(),
white_img,
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
side_view=True)
final_img = np.concatenate([input_patch, regression_img, side_img], axis=1)
else:
final_img = np.concatenate([input_patch, regression_img], axis=1)
cv2.imwrite(os.path.join(args.out_folder, f'{img_fn}_{person_id}.png'), 255*final_img[:, :, ::-1])
# Add all verts and cams to list
verts = out['pred_vertices'][n].detach().cpu().numpy()
is_right = batch['right'][n].cpu().numpy()
verts[:,0] = (2*is_right-1)*verts[:,0]
cam_t = pred_cam_t_full[n]
all_verts.append(verts)
all_cam_t.append(cam_t)
all_right.append(is_right)
# Save all meshes to disk
if args.save_mesh:
camera_translation = cam_t.copy()
tmesh = renderer.vertices_to_trimesh(verts, camera_translation, LIGHT_BLUE, is_right=is_right)
tmesh.export(os.path.join(args.out_folder, f'{img_fn}_{person_id}.obj'))
# Render front view
if args.full_frame and len(all_verts) > 0:
misc_args = dict(
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
focal_length=scaled_focal_length,
)
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=img_size[n], is_right=all_right, **misc_args)
# Overlay image
input_img = img_cv2.astype(np.float32)[:,:,::-1]/255.0
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
cv2.imwrite(os.path.join(args.out_folder, f'{img_fn}_all.jpg'), 255*input_img_overlay[:, :, ::-1])
if __name__ == '__main__':
main()