Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ufunc 'isnan' not supported for the input types (bio_eventrelated.ipnb) #113

Open
wildan-mahmud opened this issue Oct 19, 2024 · 0 comments

Comments

@wildan-mahmud
Copy link

Dear neuro-kit experts,

I really happy that there is a python package for psychophysiological data!

I am trying to run the tutorial (https://neuropsychology.github.io/NeuroKit/examples/bio_eventrelated/bio_eventrelated.html) :

# Process the signal

data_clean, info = nk.bio_process(ecg=data['ECG'],
rsp=data['RSP'],
eda=['EDA'],
keep=data['Photosensor'],
sampling_rate=100)

but encountered this error :
ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''

and this is tracebak from jetbrains dataspell :
TypeError Traceback (most recent call last)
Cell In[10], line 2
1 # Process the signal
----> 2 data_clean, info = nk.bio_process(ecg=data['ECG'],
3 rsp=data['RSP'],
4 eda=['EDA'],
5 keep=data['Photosensor'],
6 sampling_rate=100)

File D:\Lab-Neurokit2\venv\lib\site-packages\neurokit2\bio\bio_process.py:187, in bio_process(ecg, rsp, eda, emg, ppg, eog, keep, sampling_rate)
185 if eda is not None:
186 eda = as_vector(eda)
--> 187 eda_signals, eda_info = eda_process(eda, sampling_rate=sampling_rate)
188 bio_info.update(eda_info)
189 bio_df = pd.concat([bio_df, eda_signals], axis=1)

File D:\Lab-Neurokit2\venv\lib\site-packages\neurokit2\eda\eda_process.py:86, in eda_process(eda_signal, sampling_rate, method, report, **kwargs)
82 methods = eda_methods(sampling_rate=sampling_rate, method=method, **kwargs)
84 # Preprocess
85 # Clean signal
---> 86 eda_cleaned = eda_clean(
87 eda_signal,
88 sampling_rate=sampling_rate,
89 method=methods["method_cleaning"],
90 **methods["kwargs_cleaning"],
91 )
92 if methods["method_phasic"] is None or methods["method_phasic"].lower() == "none":
93 eda_decomposed = pd.DataFrame({"EDA_Phasic": eda_cleaned})

File D:\Lab-Neurokit2\venv\lib\site-packages\neurokit2\eda\eda_clean.py:67, in eda_clean(eda_signal, sampling_rate, method)
64 eda_signal = as_vector(eda_signal)
66 # Missing data
---> 67 n_missing = np.sum(np.isnan(eda_signal))
68 if n_missing > 0:
69 warn(
70 "There are " + str(n_missing) + " missing data points in your signal."
71 " Filling missing values by using the forward filling method.",
72 category=NeuroKitWarning,
73 )

Here is information about my settings:
OS: Win 11

Packages:
Python 3.10.0
Neurokit 0.2.10
pandas 2.2.3
Numpy 2.1.2
seaborn 0.13.2
sklearn 1.5.2

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant