-
Notifications
You must be signed in to change notification settings - Fork 0
/
DeltaBlue.java
executable file
·714 lines (621 loc) · 24.1 KB
/
DeltaBlue.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
import java.util.List;
import java.util.ArrayList;
import java.util.Arrays;
// Strengths are used to measure the relative importance of constraints. New
// strengths may be inserted in the strength hierarchy without disrupting
// current constraints. Strengths cannot be created outside this class, so
// pointer comparison can be used for value comparison.
class Strength {
protected String name;
protected int value;
public Strength(String name, int value) {
this.name = name;
this.value = value;
}
public boolean strongerThan(Strength other) {
return this.value < other.value;
}
public boolean weakerThan(Strength other) {
return this.value > other.value;
}
public Strength strongest(Strength other) {
return this.strongerThan(other) ? this : other;
}
public Strength weakest(Strength other) {
return this.weakerThan(other) ? this : other;
}
static final Strength required = new Strength("required", 0);
static final Strength strongPreferred = new Strength("strongPreferred", 1);
static final Strength preferred = new Strength("preferred", 2);
static final Strength strongDefault = new Strength("strongDefault", 3);
static final Strength normal = new Strength("normal", 4);
static final Strength weakDefault = new Strength("weakDefault", 5);
static final Strength weakest = new Strength("weakest", 6);
static final List<Strength> descendingStrengths = Arrays.asList(required,
strongPreferred, preferred, strongDefault, normal, weakDefault, weakest);
}
class Direction {
protected String name;
public Direction(String name) {
this.name = name;
}
static final Direction forward = new Direction("forward");
static final Direction backward = new Direction("backward");
}
// I represent a constrained variable. In addition to my value, I maintain the
// structure of the constraint graph, the current dataflow graph, and various
// parameters of interest to the DeltaBlue incremental constraint solver.
class Variable {
protected int value;
protected List<Constraint> constraints = new ArrayList<Constraint>(2);
protected Constraint determinedBy;
protected int mark = 0;
protected Strength walkStrength = Strength.weakest;
protected boolean stay = true;
protected String name;
protected Variable(String name, int value) {
this.name = name;
this.value = value;
}
// Add the given constraint to the set of all constraints that refer to me.
public void addConstraint(Constraint c) {
constraints.add(c);
}
// Remove all traces of c from this variable.
public void removeConstraint(Constraint c) {
constraints.remove(c);
if (determinedBy == c) determinedBy = null;
}
}
// I am an abstract class representing a system-maintainable relationship (or
// "constraint") between a set of variables. I supply a strength instance
// variable; concrete subclasses provide a means of storing the constrained
// variables and other information required to represent a constraint.
abstract class Constraint {
protected Strength strength;
public Constraint(Strength strength) {
this.strength = strength;
}
// Activate this constraint and attempt to satisfy it.
public void addConstraint() {
addToGraph();
Planner.planner.incrementalAdd(this);
}
// Add myself to the constraint graph.
public abstract void addToGraph();
// Decide if I can be satisfied and record that decision. The output of the
// chosen method must not have the given mark and must have a walkabout
// strength less than that of this constraint.
public abstract void chooseMethod(int mark);
// Deactivate this constraint, remove it from the constraint graph, possibly
// causing other constraints to be satisfied, and destroy it.
public void destroyConstraint() {
if (isSatisfied()) Planner.planner.incrementalRemove(this);
removeFromGraph();
}
// Enforce this constraint. Assume that it is satisfied.
public abstract void execute();
// Assume that I am satisfied. Answer true if all my current inputs are
// known. A variable is known if either a) it is 'stay' (i.e. it is a
// constant at plan execution time), b) it has the given mark (indicating
// that it has been computed by a constraint appearing earlier in the plan),
// or c) it is not determined by any constraint.
public abstract boolean inputsKnown(int mark);
// Normal constraints are not input constraints. An input constraint is one
// that depends on external state, such as the mouse, the keyboard, a clock,
// or some arbitrary piece of imperative code.
public boolean isInput() {
return false;
}
// Answer true if this constraint is satisfied in the current solution.
public abstract boolean isSatisfied();
// Set the mark of all input from the given mark.
public abstract void markInputs(int mark);
// Record the fact that I am unsatisfied.
public abstract void markUnsatisfied();
// Answer my current output variable. Raise an error if I am not currently
// satisfied.
public abstract Variable output();
// Calculate the walkabout strength, the stay flag, and, if it is 'stay', the
// value for the current output of this constraint. Assume this constraint is
// satisfied.
public abstract void recalculate();
// Remove myself from the constraint graph.
public abstract void removeFromGraph();
// Attempt to find a way to enforce this constraint. If successful, record
// the solution, perhaps modifying the current dataflow graph. Answer the
// constraint that this constraint overrides, if there is one, or nil, if
// there isn't. Assume: I am not already satisfied.
public Constraint satisfy(int mark) {
chooseMethod(mark);
if (!isSatisfied()) {
if (strength == Strength.required)
throw new RuntimeException("Could not satisfy a required constraint");
return null;
}
// constraint can be satisfied
// mark inputs to allow cycle detection in addPropagate
markInputs(mark);
Variable out = output();
Constraint overridden = out.determinedBy;
if (overridden != null) overridden.markUnsatisfied();
out.determinedBy = this;
if (!Planner.planner.addPropagate(this, mark))
throw new RuntimeException("Cycle encountered");
out.mark = mark;
return overridden;
}
}
// I am an abstract superclass for constraints having a single possible output
// variable.
abstract class UnaryConstraint extends Constraint {
protected Variable output;
protected boolean satisfied = false;
public UnaryConstraint(Variable output, Strength strength) {
super(strength);
this.output = output;
}
// Add myself to the constraint graph.
public void addToGraph() {
output.addConstraint(this);
satisfied = false;
}
// Add myself to the constraint graph.
public void chooseMethod(int mark) {
satisfied = (output.mark != mark) &&
strength.strongerThan(output.walkStrength);
}
public boolean inputsKnown(int mark) {
return true;
}
// Answer true if this constraint is satisfied in the current solution.
public boolean isSatisfied() {
return satisfied;
}
// I have no inputs.
public void markInputs(int mark) {}
// Record the fact that I am unsatisfied.
public void markUnsatisfied() {
satisfied = false;
}
public Variable output() {
return output;
}
// Calculate the walkabout strength, the stay flag, and, if it is 'stay', the
// value for the current output of this constraint. Assume this constraint
// is satisfied.
public void recalculate() {
output.walkStrength = strength;
output.stay = !isInput();
if (output.stay) execute(); // Stay optimization
}
// Remove myself from the constraint graph.
public void removeFromGraph() {
if (output != null) output.removeConstraint(this);
satisfied = false;
}
}
// I am a unary input constraint used to mark a variable that the client wishes
// to change.
class EditConstraint extends UnaryConstraint {
public EditConstraint(Variable v, Strength s) {
super(v, s);
addConstraint();
}
// Edit constraints do nothing.
public void execute() {}
// I am a unary input constraint used to mark a variable that the client
// wishes to change.
public boolean isInput() {
return true;
}
}
// I mark variables that should, with some level of preference, stay the same.
// I have one method with zero inputs and one output, which does nothing.
// Planners may exploit the fact that, if I am satisfied, my output will not
// change during plan execution. This is called "stay optimization".
class StayConstraint extends UnaryConstraint {
public StayConstraint(Variable v, Strength s) {
super(v, s);
addConstraint();
}
// Stay constraints do nothing.
public void execute() {}
}
// I am an abstract superclass for constraints having two possible output variables.
abstract class BinaryConstraint extends Constraint {
protected Variable v1;
protected Variable v2;
protected Direction direction;
public BinaryConstraint(Variable v1, Variable v2, Strength s) {
super(s);
this.v1 = v1;
this.v2 = v2;
}
// Add myself to the constraint graph.
public void addToGraph() {
v1.addConstraint(this);
v2.addConstraint(this);
direction = null;
}
// Decide if I can be satisfied and which way I should flow based on the
// relative strength of the variables I relate, and record that decision.
public void chooseMethod(int mark) {
if (v1.mark == mark) {
direction = (v2.mark != mark) && strength.strongerThan(v2.walkStrength)
? Direction.forward
: null;
return;
}
if (v2.mark == mark) {
direction = (v1.mark != mark) && strength.strongerThan(v1.walkStrength)
? Direction.backward
: null;
return;
}
// If we get here, neither variable is marked, so we have a choice.
if (v1.walkStrength.weakerThan(v2.walkStrength)) {
direction = strength.strongerThan(v1.walkStrength)
? Direction.backward
: null;
} else {
direction = strength.strongerThan(v2.walkStrength)
? Direction.forward
: null;
}
}
// Answer my current input variable
public Variable input() {
return direction == Direction.forward ? v1 : v2;
}
public boolean inputsKnown(int mark) {
Variable i = input();
return (i.mark == mark) || i.stay || (i.determinedBy == null);
}
// Answer true if this constraint is satisfied in the current solution.
public boolean isSatisfied() {
return direction != null;
}
// Mark the input variable with the given mark.
public void markInputs(int mark) {
input().mark = mark;
}
// Record the fact that I am unsatisfied.
public void markUnsatisfied() {
direction = null;
}
// Answer my current output variable.
public Variable output() {
return direction == Direction.forward ? v2 : v1;
}
// Calculate the walkabout strength, the stay flag, and, if it is 'stay', the
// value for the current output of this constraint. Assume this constraint is
// satisfied.
public void recalculate() {
Variable i = input(), o = output();
o.walkStrength = strength.weakest(i.walkStrength);
o.stay = i.stay;
if (o.stay) execute();
}
// Calculate the walkabout strength, the stay flag, and, if it is 'stay', the
// value for the current output of this constraint. Assume this constraint is
// satisfied.
public void removeFromGraph() {
if (v1 != null) v1.removeConstraint(this);
if (v2 != null) v2.removeConstraint(this);
direction = null;
}
}
// I constrain two variables to have the same value: "v1 = v2".
class EqualityConstraint extends BinaryConstraint {
public EqualityConstraint(Variable v1, Variable v2, Strength s) {
super(v1, v2, s);
addConstraint();
}
// Enforce this constraint. Assume that it is satisfied.
public void execute() {
output().value = input().value;
}
}
// I relate two variables by the linear scaling relationship: "v2 = (v1 *
// scale) + offset". Either v1 or v2 may be changed to maintain this
// relationship but the scale factor and offset are considered read-only.
class ScaleConstraint extends BinaryConstraint {
protected Variable scale; // scale factor input variable
protected Variable offset; // offset input variable
public ScaleConstraint(Variable src, Variable scale, Variable offset, Variable dest, Strength s) {
super(src, dest, s);
this.scale = scale;
this.offset = offset;
addConstraint();
}
// Add myself to the constraint graph.
public void addToGraph() {
super.addToGraph();
scale.addConstraint(this);
offset.addConstraint(this);
}
// Enforce this constraint. Assume that it is satisfied.
public void execute() {
if (direction == Direction.forward) {
v2.value = v1.value * scale.value + offset.value;
} else {
v1.value = (v2.value - offset.value) / scale.value;
}
}
// Mark the inputs from the given mark.
public void markInputs(int mark) {
super.markInputs(mark);
scale.mark = mark;
offset.mark = mark;
}
// Calculate the walkabout strength, the stay flag, and, if it is 'stay', the
// value for the current output of this constraint. Assume this constraint is
// satisfied.
public void recalculate() {
Variable i = input(), o = output();
o.walkStrength = strength.weakest(i.walkStrength);
o.stay = i.stay && scale.stay && offset.stay;
if (o.stay) execute(); // stay optimization
}
// Remove myself from the constraint graph.
public void removeFromGraph() {
super.removeFromGraph();
if (scale != null) scale.removeConstraint(this);
if (offset != null) offset.removeConstraint(this);
}
}
// A Plan is an ordered list of constraints to be executed in sequence to
// resatisfy all currently satisfiable constraints in the face of one or more
// changing inputs.
class Plan {
protected List<Constraint> constraints = new ArrayList<Constraint>();
public Plan() { }
public void addConstraint(Constraint c) {
constraints.add(c);
}
// Execute my constraints in order.
public void execute() {
for (Constraint c: constraints) {
c.execute();
};
}
}
// I embody the DeltaBlue algorithm described in:
// ''The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver''
// by Bjorn N. Freeman-Benson and John Maloney.
// See January 1990 Communications of the ACM
// or University of Washington TR 89-08-06 for further details.
class Planner {
protected int currentMark = 0;
public void addConstraintsConsumingTo(Variable v, List<Constraint> list) {
Constraint determining = v.determinedBy;
for (Constraint c : v.constraints) {
if (c != determining && c.isSatisfied()) list.add(c);
}
}
// Recompute the walkabout strengths and stay flags of all variables
// downstream of the given constraint and recompute the actual values of all
// variables whose stay flag is true. If a cycle is detected, remove the
// given constraint and answer false. Otherwise, answer true.
// Details: Cycles are detected when a marked variable is encountered
// downstream of the given constraint. The sender is assumed to have marked
// the inputs of the given constraint with the given mark. Thus, encountering
// a marked node downstream of the output constraint means that there is a
// path from the constraint's output to one of its inputs.
public boolean addPropagate(Constraint c, int mark) {
List<Constraint> todo = new ArrayList<Constraint>();
todo.add(c);
while (!todo.isEmpty()) {
Constraint d = todo.remove(todo.size()-1);
if (d.output().mark == mark) {
incrementalRemove(c);
return false;
}
d.recalculate();
addConstraintsConsumingTo(d.output(), todo);
}
return true;
}
// This is the standard DeltaBlue benchmark. A long chain of equality
// constraints is constructed with a stay constraint on one end. An edit
// constraint is then added to the opposite end and the time is measured for
// adding and removing this constraint, and extracting and executing a
// constraint satisfaction plan. There are two cases. In case 1, the added
// constraint is stronger than the stay constraint and values must propagate
// down the entire length of the chain. In case 2, the added constraint is
// weaker than the stay constraint so it cannot be accommodated. The cost in
// this case is, of course, very low. Typical situations lie somewhere
// between these two extremes.
public void chainTest(int n) {
Variable prev = null, first = null, last = null;
for (int i = 1; i <= n; i++) {
String name = "v"+i;
Variable v = new Variable(name, 0);
if (prev != null) new EqualityConstraint(prev, v, Strength.required);
if (i == 1) first = v;
if (i == n) last = v;
prev = v;
}
new StayConstraint(last, Strength.strongDefault);
Constraint editC = new EditConstraint(first, Strength.preferred);
List<Constraint> editV = new ArrayList<Constraint>();
editV.add(editC);
Plan plan = extractPlanFromConstraints(editV);
for (int i = 1; i <= n; i++) {
first.value = i;
plan.execute();
if (last.value != i) throw new RuntimeException("Chain test failed!");
}
editC.destroyConstraint();
}
// Extract a plan for resatisfaction starting from the outputs of the given
// constraints, usually a set of input constraints.
public Plan extractPlanFromConstraints(List<Constraint> constraints) {
List<Constraint> sources = new ArrayList<Constraint>();
for (Constraint c : constraints) {
if (c.isInput() && c.isSatisfied()) sources.add(c);
}
return makePlan(sources);
}
// Attempt to satisfy the given constraint and, if successful, incrementally
// update the dataflow graph. Details: If satisfying the constraint is
// successful, it may override a weaker constraint on its output. The
// algorithm attempts to resatisfy that constraint using some other method.
// This process is repeated until either a) it reaches a variable that was
// not previously determined by any constraint or b) it reaches a constraint
// that is too weak to be satisfied using any of its methods. The variables
// of constraints that have been processed are marked with a unique mark
// value so that we know where we've been. This allows the algorithm to avoid
// getting into an infinite loop even if the constraint graph has an
// inadvertent cycle.
public void incrementalAdd(Constraint c) {
int mark = newMark();
Constraint overridden = c.satisfy(mark);
while (overridden != null) {
overridden = overridden.satisfy(mark);
}
}
// Entry point for retracting a constraint. Remove the given constraint and
// incrementally update the dataflow graph.
// Details: Retracting the given constraint may allow some currently
// unsatisfiable downstream constraint to be satisfied. We therefore collect
// a list of unsatisfied downstream constraints and attempt to satisfy each
// one in turn. This list is traversed by constraint strength, strongest
// first, as a heuristic for avoiding unnecessarily adding and then
// overriding weak constraints.
// Assume: c is satisfied.
public void incrementalRemove(Constraint c) {
Variable out = c.output();
c.markUnsatisfied();
c.removeFromGraph();
List<Constraint> unsatisfied = removePropagateFrom(out);
for (Strength strength : Strength.descendingStrengths) {
for (Constraint u : unsatisfied) {
if (u.strength == strength) incrementalAdd(u);
}
}
}
// Extract a plan for resatisfaction starting from the given source
// constraints, usually a set of input constraints. This method assumes that
// stay optimization is desired; the plan will contain only constraints whose
// output variables are not stay. Constraints that do no computation, such as
// stay and edit constraints, are not included in the plan.
// Details: The outputs of a constraint are marked when it is added to the
// plan under construction. A constraint may be appended to the plan when all
// its input variables are known. A variable is known if either a) the
// variable is marked (indicating that has been computed by a constraint
// appearing earlier in the plan), b) the variable is 'stay' (i.e. it is a
// constant at plan execution time), or c) the variable is not determined by
// any constraint. The last provision is for past states of history
// variables, which are not stay but which are also not computed by any
// constraint.
// Assume: sources are all satisfied.
public Plan makePlan(List<Constraint> sources) {
int mark = newMark();
Plan plan = new Plan();
List<Constraint> todo = sources;
while (!todo.isEmpty()) {
Constraint c = todo.remove(todo.size()-1);
if (c.output().mark != mark && c.inputsKnown(mark)) {
// not in plan already and eligible for inclusion
plan.addConstraint(c);
c.output().mark = mark;
addConstraintsConsumingTo(c.output(), todo);
}
}
return plan;
}
// Select a previously unused mark value.
public int newMark() {
currentMark = currentMark + 1;
return currentMark;
}
// This test constructs a two sets of variables related to each other by a
// simple linear transformation (scale and offset). The time is measured to
// change a variable on either side of the mapping and to change the scale
// and offset factors.
public void projectionTest(int n) {
Variable src = null, dst = null;
Variable scale = new Variable("scale", 10);
Variable offset = new Variable("offset", 1000);
List<Variable> dests = new ArrayList<Variable>();
for (int i = 0; i < n; i++) {
src = new Variable("src"+i, i);
dst = new Variable("dst"+i, i);
dests.add(dst);
new StayConstraint(src, Strength.normal);
new ScaleConstraint(src, scale, offset, dst, Strength.required);
}
setValue(src, 17);
if (dst.value != 1170)
throw new RuntimeException("Projection test 1 failed!");
setValue(dst, 1050);
if (src.value != 5)
throw new RuntimeException("Projection test 2 failed!");
setValue(scale, 5);
for (int i = 0; i < n-1; i++) {
if (dests.get(i).value != (i * 5 + 1000))
throw new RuntimeException("Projection test 3 failed!");
}
setValue(offset, 2000);
for (int i = 0; i < n-1; i++) {
if (dests.get(i).value != (i * 5 + 2000))
throw new RuntimeException("Projection test 4 failed!");
}
}
// The given variable has changed. Propagate new values downstream.
public void propagateFrom(Variable v) {
List<Constraint> todo = new ArrayList<Constraint>();
addConstraintsConsumingTo(v, todo);
while (!todo.isEmpty()) {
Constraint c = todo.remove(todo.size()-1);
c.execute();
addConstraintsConsumingTo(c.output(), todo);
}
}
// Update the walkabout strengths and stay flags of all variables downstream
// of the given constraint. Answer a collection of unsatisfied constraints
// sorted in order of decreasing strength.
public List<Constraint> removePropagateFrom(Variable out) {
out.determinedBy = null;
out.walkStrength = Strength.weakest;
out.stay = true;
List<Constraint> unsatisfied = new ArrayList<Constraint>();
List<Variable> todo = new ArrayList<Variable>();
todo.add(out);
while (!todo.isEmpty()) {
Variable v = todo.remove(todo.size()-1);
for (Constraint c : v.constraints) {
if (!c.isSatisfied()) unsatisfied.add(c);
};
Constraint determining = v.determinedBy;
for (Constraint nextC : v.constraints) {
if (nextC != determining && nextC.isSatisfied()) {
nextC.recalculate();
todo.add(nextC.output());
}
}
}
return unsatisfied;
}
public void setValue(Variable v, int newValue) {
Constraint editC = new EditConstraint(v, Strength.preferred);
List<Constraint> editV = new ArrayList<Constraint>();
editV.add(editC);
Plan plan = extractPlanFromConstraints(editV);
for (int i = 0; i < 10; i++) {
v.value = newValue;
plan.execute();
}
editC.destroyConstraint();
}
static Planner planner = new Planner();
}
class DeltaBlue extends Benchmark {
DeltaBlue() { super("DeltaBlue"); }
public void run() {
Planner.planner.chainTest(100);
Planner.planner.projectionTest(100);
}
}