Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[tuner] Add direct TD spec generation for candidates #606

Open
wants to merge 8 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 32 additions & 0 deletions tuner/examples/test/README_.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# Example Tuner Test

Example of tuning a dispatch and full model.

## Environments
Follow instructions in [`/tuner/README.md`](../README.md)

## Running the Tuner

### Choose a model to tune
This example uses the simple `double_mmt.mlir` file.

### Generate a benchmark file
Use the usual `iree-compile` command for your model and add
`--iree-hal-dump-executable-files-to=dump`. For example:
```shell
iree-compile double_mmt.mlir --iree-hal-target-backends=rocm --iree-hip-target=gfx942 --iree-hal-dump-executable-files-to=dump -o /dev/null
```

Next, copy the `*_benchmark.mlir` file to some temporary directory of choice.
This will be the input to the dispatch tuner. In the example, the `mmt_benchmark.mlir` example file (from double_mmt.mlir) can be used.

### Recommended Trial Run
For an initial trial to test the tuning loop, use:
```shell
python -m examples.test double_mmt.mlir mmt_benchmark.mlir --num-candidates=20
```

### Basic Usage
```shell
python -m examples.test double_mmt.mlir mmt_benchmark.mlir
```
5 changes: 5 additions & 0 deletions tuner/examples/test/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# Copyright 2024 Advanced Micro Devices, Inc.
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
9 changes: 9 additions & 0 deletions tuner/examples/test/__main__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
# Copyright 2024 Advanced Micro Devices, Inc.
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

from . import tuner_test

tuner_test.main()
68 changes: 68 additions & 0 deletions tuner/examples/test/conv_benchmark.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
module {
Max191 marked this conversation as resolved.
Show resolved Hide resolved
util.global private @__device_0 = #hal.device.target<"hip", {legacy_sync}, [#hal.executable.target<"rocm", "rocm-hsaco-fb", {abi = "hip", iree.gpu.target = #iree_gpu.target<arch = "gfx942", features = "", wgp = <compute = fp64|fp32|fp16|int64|int32|int16|int8, storage = b64|b32|b16|b8, subgroup = shuffle|arithmetic, dot = dp4xi8toi32, mma = [<MFMA_F32_16x16x4_F32>, <MFMA_F32_16x16x16_F16>, <MFMA_F32_32x32x8_F16>, <MFMA_F64_16x16x4_F64>, <MFMA_F32_16x16x16_BF16>, <MFMA_F32_32x32x8_BF16>, <MFMA_F32_16x16x32_F8E5M2FNUZ>, <MFMA_F32_16x16x32_F8E5M2FNUZ_F8E4M3FNUZ>, <MFMA_F32_16x16x32_F8E4M3FNUZ>, <MFMA_F32_16x16x32_F8E4M3FNUZ_F8E5M2FNUZ>, <MFMA_F32_32x32x16_F8E5M2FNUZ>, <MFMA_F32_32x32x16_F8E5M2FNUZ_F8E4M3FNUZ>, <MFMA_F32_32x32x16_F8E4M3FNUZ>, <MFMA_F32_32x32x16_F8E4M3FNUZ_F8E5M2FNUZ>, <MFMA_I32_16x16x32_I8>, <MFMA_I32_32x32x16_I8>], subgroup_size_choices = [64], max_workgroup_sizes = [1024, 1024, 1024], max_thread_count_per_workgroup = 1024, max_workgroup_memory_bytes = 65536, max_workgroup_counts = [2147483647, 2147483647, 2147483647], max_load_instruction_bits = 128, simds_per_wgp = 4, vgpr_space_bits = 16384>>, ukernels = "none"}>]> : !hal.device
hal.executable private @main_0_dispatch_0 {
hal.executable.variant public @rocm_hsaco_fb target(<"rocm", "rocm-hsaco-fb", {abi = "hip", iree.gpu.target = #iree_gpu.target<arch = "gfx942", features = "", wgp = <compute = fp64|fp32|fp16|int64|int32|int16|int8, storage = b64|b32|b16|b8, subgroup = shuffle|arithmetic, dot = dp4xi8toi32, mma = [<MFMA_F32_16x16x4_F32>, <MFMA_F32_16x16x16_F16>, <MFMA_F32_32x32x8_F16>, <MFMA_F64_16x16x4_F64>, <MFMA_F32_16x16x16_BF16>, <MFMA_F32_32x32x8_BF16>, <MFMA_F32_16x16x32_F8E5M2FNUZ>, <MFMA_F32_16x16x32_F8E5M2FNUZ_F8E4M3FNUZ>, <MFMA_F32_16x16x32_F8E4M3FNUZ>, <MFMA_F32_16x16x32_F8E4M3FNUZ_F8E5M2FNUZ>, <MFMA_F32_32x32x16_F8E5M2FNUZ>, <MFMA_F32_32x32x16_F8E5M2FNUZ_F8E4M3FNUZ>, <MFMA_F32_32x32x16_F8E4M3FNUZ>, <MFMA_F32_32x32x16_F8E4M3FNUZ_F8E5M2FNUZ>, <MFMA_I32_16x16x32_I8>, <MFMA_I32_32x32x16_I8>], subgroup_size_choices = [64], max_workgroup_sizes = [1024, 1024, 1024], max_thread_count_per_workgroup = 1024, max_workgroup_memory_bytes = 65536, max_workgroup_counts = [2147483647, 2147483647, 2147483647], max_load_instruction_bits = 128, simds_per_wgp = 4, vgpr_space_bits = 16384>>, ukernels = "none"}>) {
hal.executable.export public @main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32 ordinal(0) layout(#hal.pipeline.layout<bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) {
^bb0(%arg0: !hal.device):
%x, %y, %z = flow.dispatch.workgroup_count_from_slice
hal.return %x, %y, %z : index, index, index
}
builtin.module {
func.func @main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32() attributes {translation_info = #iree_codegen.translation_info<pipeline = LLVMGPUVectorDistribute workgroup_size = [256, 1, 1] subgroup_size = 64, {}>} {
%cst = arith.constant 0.000000e+00 : f16
%c0 = arith.constant 0 : index
%0 = hal.interface.binding.subspan layout(<bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(0) alignment(64) offset(%c0) flags("ReadOnly|Indirect") : !flow.dispatch.tensor<readonly:tensor<2x34x34x1280xi8>>
%1 = hal.interface.binding.subspan layout(<bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(1) alignment(64) offset(%c0) flags("ReadOnly|Indirect") : !flow.dispatch.tensor<readonly:tensor<3x3x1280x1280xi8>>
%2 = hal.interface.binding.subspan layout(<bindings = [#hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, "ReadOnly|Indirect">, #hal.pipeline.binding<storage_buffer, Indirect>], flags = Indirect>) binding(2) alignment(64) offset(%c0) flags(Indirect) : !flow.dispatch.tensor<writeonly:tensor<2x32x32x1280xi32>>
%3 = flow.dispatch.tensor.load %0, offsets = [0, 0, 0, 0], sizes = [2, 34, 34, 1280], strides = [1, 1, 1, 1] : !flow.dispatch.tensor<readonly:tensor<2x34x34x1280xi8>> -> tensor<2x34x34x1280xi8>
%4 = flow.dispatch.tensor.load %1, offsets = [0, 0, 0, 0], sizes = [3, 3, 1280, 1280], strides = [1, 1, 1, 1] : !flow.dispatch.tensor<readonly:tensor<3x3x1280x1280xi8>> -> tensor<3x3x1280x1280xi8>
%5 = tensor.empty() : tensor<2x32x32x1280xi32>
%6 = linalg.fill ins(%cst : f16) outs(%5 : tensor<2x32x32x1280xi32>) -> tensor<2x32x32x1280xi32>
%7 = linalg.conv_2d_nhwc_hwcf {lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_I32_16x16x32_I8>, promote_operands = [0, 1], reduction = [0, 0, 0, 0, 1, 1, 64], subgroup_m_count = 1 : i64, subgroup_n_count = 4 : i64, workgroup = [1, 1, 32, 256, 0, 0, 0]}>, root_op} ins(%3, %4 : tensor<2x34x34x1280xi8>, tensor<3x3x1280x1280xi8>) outs(%6 : tensor<2x32x32x1280xi32>) -> tensor<2x32x32x1280xi32>
flow.dispatch.tensor.store %7, %2, offsets = [0, 0, 0, 0], sizes = [2, 32, 32, 1280], strides = [1, 1, 1, 1] : tensor<2x32x32x1280xi32> -> !flow.dispatch.tensor<writeonly:tensor<2x32x32x1280xi32>>
return
}
}
}
}
util.global private mutable @main_0_dispatch_0_rocm_hsaco_fb_main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32_buffer : !hal.buffer
util.initializer {
%c28190720 = arith.constant 28190720 : index
%device, %queue_affinity = hal.device.resolve on(<@__device_0>) : !hal.device, i64
%allocator = hal.device.allocator<%device : !hal.device> : !hal.allocator
%buffer = hal.allocator.allocate<%allocator : !hal.allocator> affinity(%queue_affinity) type("DeviceVisible|DeviceLocal") usage("TransferSource|TransferTarget|Transfer|DispatchStorageRead|DispatchStorageWrite|DispatchStorage") : !hal.buffer{%c28190720}
util.global.store %buffer, @main_0_dispatch_0_rocm_hsaco_fb_main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32_buffer : !hal.buffer
util.return
}
util.func public @main_0_dispatch_0_rocm_hsaco_fb_main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32(%arg0: i32) attributes {iree.abi.stub, iree.reflection = {iree.benchmark = "dispatch"}} {
%c-1_i32 = arith.constant -1 : i32
%0 = util.null : !hal.fence
%c1 = arith.constant 1 : index
%c10485760 = arith.constant 10485760 : index
%c17704960 = arith.constant 17704960 : index
%c14745600 = arith.constant 14745600 : index
%c2959360 = arith.constant 2959360 : index
%c0 = arith.constant 0 : index
%1 = arith.index_cast %arg0 : i32 to index
%device, %queue_affinity = hal.device.resolve on(<@__device_0>) : !hal.device, i64
%cmd = hal.command_buffer.create device(%device : !hal.device) mode("OneShot|AllowInlineExecution") categories(Dispatch) affinity(%queue_affinity) : !hal.command_buffer
%main_0_dispatch_0_rocm_hsaco_fb_main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32_buffer = util.global.load @main_0_dispatch_0_rocm_hsaco_fb_main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32_buffer : !hal.buffer
%workgroup_x, %workgroup_y, %workgroup_z = hal.executable.calculate_workgroups device(%device : !hal.device) target(@main_0_dispatch_0::@rocm_hsaco_fb::@main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32) : index, index, index
%exe = hal.executable.lookup device(%device : !hal.device) executable(@main_0_dispatch_0) : !hal.executable
%ordinal = hal.executable.export.ordinal target(@main_0_dispatch_0::@rocm_hsaco_fb::@main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32) : index
scf.for %arg1 = %c0 to %1 step %c1 {
hal.command_buffer.dispatch<%cmd : !hal.command_buffer> target(%exe : !hal.executable)[%ordinal] workgroups([%workgroup_x, %workgroup_y, %workgroup_z]) bindings([
(%main_0_dispatch_0_rocm_hsaco_fb_main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32_buffer : !hal.buffer)[%c0, %c2959360],
(%main_0_dispatch_0_rocm_hsaco_fb_main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32_buffer : !hal.buffer)[%c2959360, %c14745600],
(%main_0_dispatch_0_rocm_hsaco_fb_main_0_dispatch_0_conv_2d_nhwc_hwcf_2x32x32x1280x3x3x1280_i8xi8xi32_buffer : !hal.buffer)[%c17704960, %c10485760]
]) flags("None")
hal.command_buffer.execution_barrier<%cmd : !hal.command_buffer> source("Dispatch|CommandRetire") target("CommandIssue|Dispatch") flags("None")
}
hal.command_buffer.finalize<%cmd : !hal.command_buffer>
%fence = hal.fence.create device(%device : !hal.device) flags("None") : !hal.fence
hal.device.queue.execute<%device : !hal.device> affinity(%queue_affinity) wait(%0) signal(%fence) commands([%cmd])
%status = hal.fence.await until([%fence]) timeout_millis(%c-1_i32) : i32
util.status.check_ok %status, "failed to wait on timepoint"
util.return
}
}
11 changes: 11 additions & 0 deletions tuner/examples/test/conv_nhwc.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
!convA_0 = tensor<2x34x34x1280xi8>
!convB_0 = tensor<3x3x1280x1280xi8>
!convC_0 = tensor<2x32x32x1280xi32>

func.func @main_0(%arg0: !convA_0, %arg1: !convB_0) -> !convC_0 {
%cst = arith.constant 0.000000e+00 : f16
%5 = tensor.empty() : !convC_0
%6 = linalg.fill ins(%cst : f16) outs(%5 : !convC_0) -> !convC_0
%8 = linalg.conv_2d_nhwc_hwcf ins(%arg0, %arg1 : !convA_0, !convB_0) outs(%6 : !convC_0) -> !convC_0
return %8 : !convC_0
}
16 changes: 16 additions & 0 deletions tuner/examples/test/double_mmt.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
!matA_0 = tensor<2048x2048xf16>
!matB_0 = tensor<2048x2048xf16>
!matC_0 = tensor<2048x2048xf32>

!matC_1 = tensor<2048x2048xf32>

func.func @main(%arg0: !matA_0, %arg1: !matB_0) -> !matC_1 {
%cst = arith.constant 0.000000e+00 : f32
%5 = tensor.empty() : !matC_0
%6 = linalg.fill ins(%cst : f32) outs(%5 : !matC_0) -> !matC_0
%7 = linalg.matmul_transpose_b ins(%arg0, %arg1 : !matA_0, !matB_0) outs(%6 : !matC_0) -> !matC_0
%8 = tensor.empty() : !matC_1
%9 = linalg.fill ins(%cst : f32) outs(%8 : !matC_1) -> !matC_1
%10 = linalg.matmul_transpose_b ins(%7, %7 : !matC_0, !matC_0) outs(%9 : !matC_1) -> !matC_1
return %10 : !matC_1
}
Loading
Loading