-
Notifications
You must be signed in to change notification settings - Fork 703
/
waltz.lisp
246 lines (215 loc) · 9.27 KB
/
waltz.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
;;;; -*- Mode: Lisp; Syntax: Common-Lisp -*-
;;;; Code from Paradigms of AI Programming
;;;; Copyright (c) 1991 Peter Norvig
;;;; File waltz.lisp: Line-labeling using Waltz filtering.
(defstruct diagram "A diagram is a list of vertexes." vertexes)
(defstruct (vertex (:print-function print-vertex))
(name nil :type atom)
(type 'L :type (member L Y W T))
(neighbors nil :type list) ; of vertex
(labelings nil :type list)) ; of lists of (member + - L R)))))
(defun ambiguous-vertex-p (vertex)
"A vertex is ambiguous if it has more than one labeling."
(> (number-of-labelings vertex) 1))
(defun number-of-labelings (vertex)
(length (vertex-labelings vertex)))
(defun impossible-vertex-p (vertex)
"A vertex is impossible if it has no labeling."
(null (vertex-labelings vertex)))
(defun impossible-diagram-p (diagram)
"An impossible diagram is one with an impossible vertex."
(some #'impossible-vertex-p (diagram-vertexes diagram)))
(defun possible-labelings (vertex-type)
"The list of possible labelings for a given vertex type."
;; In these labelings, R means an arrow pointing away from
;; the vertex, L means an arrow pointing towards it.
(case vertex-type
((L) '((R L) (L R) (+ R) (L +) (- L) (R -)))
((Y) '((+ + +) (- - -) (L R -) (- L R) (R - L)))
((T) '((R L +) (R L -) (R L L) (R L R)))
((W) '((L R +) (- - +) (+ + -)))))
(defun print-labelings (diagram)
"Label the diagram by propagating constraints and then
searching for solutions if necessary. Print results."
(show-diagram diagram "~&The initial diagram is:")
(every #'propagate-constraints (diagram-vertexes diagram))
(show-diagram diagram
"~2&After constraint propagation the diagram is:")
(let* ((solutions (if (impossible-diagram-p diagram)
nil
(search-solutions diagram)))
(n (length solutions)))
(unless (= n 1)
(format t "~2&There are ~r solution~:p:" n)
(mapc #'show-diagram solutions)))
(values))
(defun propagate-constraints (vertex)
"Reduce the labelings on vertex by considering neighbors.
If we can reduce, propagate the constraints to each neighbor."
;; Return nil only when the constraints lead to an impossibility
(let ((old-num (number-of-labelings vertex)))
(setf (vertex-labelings vertex) (consistent-labelings vertex))
(unless (impossible-vertex-p vertex)
(when (< (number-of-labelings vertex) old-num)
(every #'propagate-constraints (vertex-neighbors vertex)))
t)))
(defun consistent-labelings (vertex)
"Return the set of labelings that are consistent with neighbors."
(let ((neighbor-labels
(mapcar #'(lambda (neighbor) (labels-for neighbor vertex))
(vertex-neighbors vertex))))
;; Eliminate labelings that don't have all lines consistent
;; with the corresponding line's label from the neighbor.
;; Account for the L-R mismatch with reverse-label.
(find-all-if
#'(lambda (labeling)
(every #'member (mapcar #'reverse-label labeling)
neighbor-labels))
(vertex-labelings vertex))))
(defun search-solutions (diagram)
"Try all labelings for one ambiguous vertex, and propagate."
;; If there is no ambiguous vertex, return the diagram.
;; If there is one, make copies of the diagram trying each of
;; the possible labelings. Propagate constraints and append
;; all the solutions together.
(let ((v (find-if #'ambiguous-vertex-p
(diagram-vertexes diagram))))
(if (null v)
(list diagram)
(mapcan
#'(lambda (v-labeling)
(let* ((diagram2 (make-copy-diagram diagram))
(v2 (find-vertex (vertex-name v) diagram2)))
(setf (vertex-labelings v2) (list v-labeling))
(if (propagate-constraints v2)
(search-solutions diagram2)
nil)))
(vertex-labelings v)))))
(defun labels-for (vertex from)
"Return all the labels for the line going to vertex."
(let ((pos (position from (vertex-neighbors vertex))))
(mapcar #'(lambda (labeling) (nth pos labeling))
(vertex-labelings vertex))))
(defun reverse-label (label)
"Account for the fact that one vertex's right is another's left."
(case label (L 'R) (R 'L) (otherwise label)))
(defun find-vertex (name diagram)
"Find the vertex in the given diagram with the given name."
(find name (diagram-vertexes diagram) :key #'vertex-name))
(defun print-vertex (vertex stream depth)
"Print a vertex in the short form."
(declare (ignore depth))
(format stream "~a/~d" (vertex-name vertex)
(number-of-labelings vertex))
vertex)
(defun show-vertex (vertex &optional (stream t))
"Print a vertex in a long form, on a new line."
(format stream "~& ~a ~d:" vertex (vertex-type vertex))
(mapc #'(lambda (neighbor labels)
(format stream " ~a~a=[~{~a~}]" (vertex-name vertex)
(vertex-name neighbor) labels))
(vertex-neighbors vertex)
(matrix-transpose (vertex-labelings vertex)))
(values))
(defun show-diagram (diagram &optional (title "~2&Diagram:")
(stream t))
"Print a diagram in a long form. Include a title."
(format stream title)
(mapc #'show-vertex (diagram-vertexes diagram))
(let ((n (reduce #'* (mapcar #'number-of-labelings
(diagram-vertexes diagram)))))
(when (> n 1)
(format stream "~&For ~:d interpretation~:p." n))
(values)))
(defun matrix-transpose (matrix)
"Turn a matrix on its side."
(if matrix (apply #'mapcar #'list matrix)))
(let ((diagrams (make-hash-table)))
(defun diagram (name)
"Get a fresh copy of the diagram with this name."
(make-copy-diagram (gethash name diagrams)))
(defun put-diagram (name diagram)
"Store a diagram under a name."
(setf (gethash name diagrams) diagram)
name))
(defun construct-diagram (vertex-descriptors)
"Build a new diagram from a set of vertex descriptor."
(let ((diagram (make-diagram)))
;; Put in the vertexes
(setf (diagram-vertexes diagram)
(mapcar #'construct-vertex vertex-descriptors))
;; Put in the neighbors for each vertex
(dolist (v-d vertex-descriptors)
(setf (vertex-neighbors (find-vertex (first v-d) diagram))
(mapcar #'(lambda (neighbor)
(find-vertex neighbor diagram))
(v-d-neighbors v-d))))
diagram))
(defun construct-vertex (vertex-descriptor)
"Build the vertex corresponding to the descriptor."
;; Descriptors are like: (x L y z)
(make-vertex
:name (first vertex-descriptor)
:type (second vertex-descriptor)
:labelings (possible-labelings (second vertex-descriptor))))
(defun v-d-neighbors (vertex-descriptor)
"The neighboring vertex names in a vertex descriptor."
(rest (rest vertex-descriptor)))
(defun make-copy-diagram (diagram)
"Make a copy of a diagram, preserving connectivity."
(let* ((new (make-diagram
:vertexes (mapcar #'copy-vertex
(diagram-vertexes diagram)))))
;; Put in the neighbors for each vertex
(dolist (v (diagram-vertexes new))
(setf (vertex-neighbors v)
(mapcar #'(lambda (neighbor)
(find-vertex (vertex-name neighbor) new))
(vertex-neighbors v))))
new))
(defun ground (diagram vertex-a vertex-b)
"Attach the line between the two vertexes to the ground.
That is, label the line with a -"
(let* ((A (find-vertex vertex-a diagram))
(B (find-vertex vertex-b diagram))
(i (position B (vertex-neighbors A))))
(assert (not (null i)))
(setf (vertex-labelings A)
(find-all-if #'(lambda (l) (eq (nth i l) '-))
(vertex-labelings A)))
diagram))
(defun find-labelings (diagram)
"Return a list of all consistent labelings of the diagram."
(every #'propagate-constraints (diagram-vertexes diagram))
(search-solutions diagram))
(defmacro defdiagram (name &rest vertex-descriptors)
"Define a diagram. A copy can be gotten by (diagram name)."
`(put-diagram ',name (construct-diagram
(check-diagram ',vertex-descriptors))))
(defun check-diagram (vertex-descriptors)
"Check if the diagram description appears consistent."
(let ((errors 0))
(dolist (v-d vertex-descriptors)
;; v-d is like: (a Y b c d)
(let ((A (first v-d))
(v-type (second v-d)))
;; Check that the number of neighbors is right for
;; the vertex type (and that the vertex type is legal)
(when (/= (length (v-d-neighbors v-d))
(case v-type ((W Y T) 3) ((L) 2) (t -1)))
(warn "Illegal type/neighbor combo: ~a" v-d)
(incf errors))
;; Check that each neighbor B is connected to
;; this vertex, A, exactly once
(dolist (B (v-d-neighbors v-d))
(when (/= 1 (count-if
#'(lambda (v-d2)
(and (eql (first v-d2) B)
(member A (v-d-neighbors v-d2))))
vertex-descriptors))
(warn "Inconsistent vertex: ~a-~a" A B)
(incf errors)))))
(when (> errors 0)
(error "Inconsistent diagram. ~d total error~:p."
errors)))
vertex-descriptors)