-
Notifications
You must be signed in to change notification settings - Fork 86
/
util.py
249 lines (207 loc) · 8.8 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/usr/bin/env python
import sys
import os
import glob
import argparse
import re
import math
from collections import defaultdict
from dateutil import parser as dateparser
import time
from datetime import datetime
from datetime import timedelta
import numpy as np
import pandas as pd
import os, errno
testid = 10020731
testid2 = 10000678
def mkdir_p(path):
try:
os.makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise Exception("Could not create {}".format(path))
def email(subj, message):
# Import smtplib for the actual sending function
import smtplib
from email.mime.text import MIMEText
msg = MIMEText(message)
msg['Subject'] = subj
msg['From'] = "[email protected]"
msg['To'] = "[email protected]"
s = smtplib.SMTP('localhost')
s.sendmail("[email protected]", ["[email protected]"], msg.as_string())
s.quit()
def merge_barra_data(price_df, barra_df):
barra_df = barra_df.unstack(level=-1).shift(1).stack()
full_df = pd.merge(price_df, barra_df, left_index=True, right_index=True, sort=True, suffixes=['', '_dead'])
full_df = remove_dup_cols(full_df)
return full_df
def remove_dup_cols(result_df):
for col in result_df.columns:
if col.endswith("_dead"):
del result_df[col]
return result_df
def merge_intra_eod(daily_df, intra_df):
print "Merging EOD bar data..."
eod_df = intra_df.unstack().at_time('16:00').stack()
merged_df = pd.merge(daily_df.reset_index(), eod_df.reset_index(), left_on=['date', 'sid'], right_on=['date', 'sid'], sort=True, suffixes=['', '_eod'])
merged_df = remove_dup_cols(merged_df)
del merged_df['ticker_eod']
merged_df.set_index(['date', 'sid'], inplace=True)
return merged_df
def merge_intra_data(daily_df, intra_df):
print "Merging intra data..."
merged_df = pd.merge(intra_df.reset_index(), daily_df.reset_index(), how='left', left_on=['date', 'sid'], right_on=['date', 'sid'], sort=False, suffixes=['', '_dead'])
merged_df = remove_dup_cols(merged_df)
merged_df.set_index(['iclose_ts', 'sid'], inplace=True)
return merged_df
def filter_expandable(df):
origsize = len(df)
result_df = df.dropna(subset=['expandable'])
result_df = result_df[ result_df['expandable'] ]
newsize = len(result_df)
print "Restricting forecast to expandables: {} -> {}".format(origsize, newsize)
return result_df
def filter_pca(df):
origsize = len(df)
result_df = df[ df['mkt_cap'] > 1e10 ]
newsize = len(result_df)
print "Restricting forecast to expandables: {} -> {}".format(origsize, newsize)
return result_df
def dump_hd5(result_df, name):
result_df.to_hdf(name + "." + df_dates(result_df) + ".h5", 'table', complib='zlib')
def dump_all(results_df):
print "Dumping alpha files..."
results_df = results_df.reset_index()
groups = results_df['iclose_ts'].unique()
for group in groups:
if str(group) == 'NaT': continue
print "Dumping group: {}".format(str(group))
date_df = results_df[ results_df['iclose_ts'] == group ]
if not len(date_df) > 0:
print "No data found at ts: {}".format(str(group))
continue
try:
os.mkdir("all")
except:
pass
filename = "./all/alpha.all." + pd.to_datetime(group).strftime('%Y%m%d_%H%M') + ".csv"
date_df.to_csv(filename, index=False);
def dump_alpha(results_df, name):
print "Dumping alpha files..."
results_df = results_df.reset_index()
groups = results_df['iclose_ts'].unique()
results_df = results_df[ ['sid', 'iclose_ts', name] ]
for group in groups:
if str(group) == 'NaT': continue
print "Dumping group: {}".format(str(group))
date_df = results_df[ results_df['iclose_ts'] == group ]
if not len(date_df) > 0:
print "No data found at ts: {}".format(str(group))
continue
try:
os.mkdir(name)
except:
pass
filename = "./"+name+"/alpha." + name + "." + pd.to_datetime(group).strftime('%Y%m%d_%H%M') + ".csv"
date_df.to_csv(filename, index=False, cols=['sid', name], float_format="%.6f")
def dump_alpha(results_df, name):
print "Dumping alpha files..."
results_df = results_df.reset_index()
groups = results_df['iclose_ts'].unique()
results_df = results_df[ ['sid', 'iclose_ts', name] ]
for group in groups:
if str(group) == 'NaT': continue
print "Dumping group: {}".format(str(group))
date_df = results_df[ results_df['iclose_ts'] == group ]
if not len(date_df) > 0:
print "No data found at ts: {}".format(str(group))
continue
try:
os.mkdir(name)
except:
pass
filename = "./"+name+"/alpha." + name + "." + pd.to_datetime(group).strftime('%Y%m%d_%H%M') + ".csv"
date_df.to_csv(filename, index=False, cols=['sid', name], float_format="%.6f")
def dump_prod_alpha(results_df, name, outputfile):
print "Dumping alpha files..."
results_df = results_df.reset_index()
group = results_df['date'].unique().max()
results_df = results_df[ ['sid', 'date', name] ]
date_df = results_df[ results_df['date'] == group ]
date_df.to_csv(outputfile, index=False, cols=['sid', name], float_format="%.6f")
def dump_daily_alpha(results_df, name):
print "Dumping daily alpha files..."
results_df = results_df.reset_index()
groups = results_df['date'].unique()
results_df = results_df[ ['sid', 'date', name] ]
for group in groups:
if str(group) == 'NaT': continue
print "Dumping group: {}".format(str(group))
date_df = results_df[ results_df['date'] == group ]
if not len(date_df) > 0:
print "No data found at ts: {}".format(str(group))
continue
try:
os.mkdir(name)
except:
pass
for stime in ['0930', '0945', '1000', '1015', '1030', '1045', '1100', '1115', '1130', '1145', '1200', '1215', '1230', '1245', '1300', '1315', '1330', '1345', '1400', '1415', '1430', '1445', '1500', '1515', '1530', '1545']:
filename = "./"+name+"/alpha." + name + "." + pd.to_datetime(group).strftime('%Y%m%d_' + str(stime)) + ".csv"
date_df.to_csv(filename, index=False, cols=['sid', name], float_format="%.6f")
def df_dates(df):
return df.index[0][0].strftime("%Y%m%d") + "-" + df.index[len(df)-1][0].strftime("%Y%m%d")
def merge_daily_calcs(full_df, result_df):
rcols = set(result_df.columns)
cols = list(rcols - set(full_df.columns))
result_df = result_df.reset_index()
full_df = full_df.reset_index()
cols.extend(['date', 'sid'])
print "Merging daily results: " + str(cols)
result_df = pd.merge(full_df, result_df[cols], how='left', left_on=['date', 'sid'], right_on=['date', 'sid'], sort=False, suffixes=['_dead', ''])
result_df.set_index(['date', 'sid'], inplace=True)
return result_df
def merge_intra_calcs(full_df, result_df):
#important for keeping NaTs out of the following merge
del result_df['date']
rcols = set(result_df.columns)
cols = list(rcols - set(full_df.columns))
print "Merging intra results: " + str(cols)
result_df = pd.merge(full_df, result_df[cols], how='left', left_index=True, right_index=True, sort=False, suffixes=['_dead', ''])
return result_df
def get_overlapping_cols(df1, df2):
cols1 = set(df1.columns)
cols2 = set(df2.columns)
res = cols1 - cols1.intersection(cols2)
return list(res)
def load_merged_results(fdirs, start, end, cols=None):
merged_df = None
for fdir in fdirs:
df = load_all_results(fdir, start, end, cols)
if merged_df is None:
merged_df = df
else:
merged_df = pd.merge(merged_df, df, left_index=True, right_index=True, suffixes=['', '_dead'])
merged_df = remove_dup_cols(merged_df)
return merged_df
def load_all_results(fdir, start, end, cols=None):
fdir += "/all/"
print "Looking in {}".format(fdir)
fcast_dfs = list()
for ff in sorted(glob.glob(fdir + "/alpha.*")):
m = re.match(r".*alpha\.all\.(\d{8})_(\d{4}).*", str(ff))
fdate = int(m.group(1))
ftime = int(m.group(2))
if ftime < 1000 or ftime > 1530: continue
if fdate < int(start) or fdate > int(end): continue
print "Loading {} for {}".format(ff, fdate)
if cols is not None:
df = pd.read_csv(ff, index_col=['iclose_ts', 'sid'], header=0, parse_dates=True, sep=",", usecols=cols)
else:
df = pd.read_csv(ff, index_col=['iclose_ts', 'sid'], header=0, parse_dates=True, sep=",")
fcast_dfs.append(df)
fcast_df = pd.concat(fcast_dfs, verify_integrity=True)
return fcast_df