-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_all_rnn.py
38 lines (33 loc) · 1.2 KB
/
run_all_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import itertools
import os
from test_rnn import run
import time
# need the train to to return some valus to store in a table
# loop for the layers
total_number = 270
index = 0
filepath = "peaks_with_dist_4.npy"
start = time.time()
# input (batch_size * window_size e.g. 100*10) -> hidden_layers -> output (2 num output classes)
# the numbers represent the number of hidden units so it would
# 2048*1024 -> 1024*256 -> 256*2
# three_layer = [2048,1024,256]
# two_layer = [2048,512]
# configurations = [two_layer, three_layer]
epoches = 100
random_states = [3,10,20,23,26,33,39,44,51,60]
hidden_units = [2048,1024,512,256,128,64]
config = [2048,1024,512]
config2 = [2048,512]
config3 = [1024]
configs = [config, config2, config3]
prefix = "test_chunks"
for chunk_size in range(10,100,10):
for hidden_dims in configs:
hidden_dims_name = ",".join([str(x) for x in hidden_dims])
for random_state in range(10):
print(f"RNNModelMultiLayer_{hidden_dims_name}_{chunk_size}_{random_state}")
run(filepath, chunk_size,epoches, hidden_dims,False,prefix,random_state)
index +=1
print(f"Done with: {index}/{total_number}")
print(f"Total Time: {time.time()-start}")