-
Notifications
You must be signed in to change notification settings - Fork 2
/
refs.bib
184 lines (167 loc) · 5.07 KB
/
refs.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
@incollection{kennedy2016semiparametric,
title={Semiparametric Theory and Empirical Processes in Causal Inference},
author={Kennedy, Edward H},
booktitle={Statistical Causal Inferences and Their Applications in Public
Health Research},
editor={He, Hua and Wu, Pan and Chen, Ding-Geng (Din)},
year={2016},
publisher={Springer},
pages={141--167},
doi={10.1007/978-3-319-41259-7_8}
}
@article{fisher2020visually,
title={Visually communicating and teaching intuition for influence
functions},
author={Fisher, Aaron and Kennedy, Edward H},
journal={The American Statistician},
volume={75},
number={2},
pages={162--172},
year={2020},
publisher={Taylor \& Francis},
doi={10.1080/00031305.2020.1717620}
}
@misc{herbps10_2023,
author = {Susmann},
title = {One Step Estimators and Pathwise Derivatives},
howpublished = {\url{https://observablehq.com/@herbps10/one-step-estimators-and-pathwise-derivatives}},
year = {2023},
note = {Accessed: YYYY-MM-DD}
}
@article{kennedy2022semiparametric,
title={Semiparametric doubly robust targeted double machine learning: A
review},
author={Kennedy, Edward H},
journal={arXiv preprint arXiv:2203.06469},
doi={10.48550/arXiv.2203.06469},
year={2022}
}
@article{hines2022demystifying,
title={Demystifying statistical learning based on efficient influence
functions},
author={Hines, Oliver and Dukes, Oliver and Diaz-Ordaz, Karla and
Vansteelandt, Stijn},
journal={The American Statistician},
volume={76},
number={3},
pages={292--304},
year={2022},
publisher={Taylor \& Francis},
doi={10.1080/00031305.2021.2021984}
}
@article{diaz2020machine,
title={Machine learning in the estimation of causal effects: targeted minimum
loss-based estimation and double/debiased machine learning},
author={D{\'\i}az, Iv{\'a}n},
journal={Biostatistics},
volume={21},
number={2},
pages={353--358},
year={2020},
publisher={Oxford University Press},
doi={10.1093/biostatistics/kxz042}
}
@article{henmi2004paradox,
title={A paradox concerning nuisance parameters and projected estimating
functions},
author={Henmi, Masayuki and Eguchi, Shinto},
journal={Biometrika},
volume={91},
number={4},
pages={929--941},
year={2004},
publisher={Oxford University Press},
doi={10.1093/biomet/91.4.929}
}
@article{ying2024geometric,
title={A geometric perspective on double robustness by semiparametric theory
and information geometry},
author={Ying, Andrew},
journal={arXiv preprint arXiv:2404.13960},
url = {https://arxiv.org/abs/2404.13960},
year={2024}
}
@book{tsiatis2007semiparametric,
title={Semiparametric Theory and Missing Data},
author={Tsiatis, Anastasios},
year={2007},
publisher={Springer},
doi={10.1007/0-387-37345-4}
}
@book{kosorok2008introduction,
title={Introduction to Empirical Processes and Semiparametric Inference},
author={Kosorok, Michael R},
year={2008},
publisher={Springer},
doi={10.1007/978-0-387-74978-5}
}
@book{vdl2003unified,
title={Unified Methods for Censored Longitudinal Data and Causality},
author={{van der Laan}, Mark J and Robins, James M},
year={2003},
publisher={Springer},
doi={10.1007/978-0-387-21700-0}
}
@book{vdl2011targeted,
title={Targeted Learning: Causal Inference for Observational and Experimental
Data},
author={{van der Laan}, Mark J and Rose, Sherri},
year={2011},
publisher={Springer},
doi={10.1007/978-1-4419-9782-1}
}
@book{vdl2018targeted,
title={Targeted Learning in Data Science: Causal Inference for Complex
Longitudinal Studies},
author={{van der Laan}, Mark J and Rose, Sherri},
year={2018},
publisher={Springer},
doi={10.1007/978-3-319-65304-4}
}
@phdthesis{rytgaard2020phd,
title = {Targeted causal learning for longitudinal data},
school = {University of Copenhagen},
author = {Rytgaard, Helene Charlotte},
year = {2020},
url = {https://biostat.ku.dk/dissertations/2020_rytgaard.pdf},
}
@book{hernan2023causal,
title={Causal Inference: What If},
author={Hern{\'a}n, Miguel A and Robins, James M},
year={2024},
publisher={CRC Press},
doi={}
}
@article{bang2005doubly,
title={Doubly robust estimation in missing data and causal inference models},
author={Bang, Heejung and Robins, James M.},
journal={Biometrics},
volume={61},
number={4},
pages={962--973},
year={2005},
publisher={Wiley Online Library},
doi={10.1111/j.1541-0420.2005.00377.x}
}
@article{vdl2012targeted,
title={Targeted minimum loss based estimation of causal effects of multiple
time point interventions},
author={{van der Laan}, Mark J and Gruber, Susan},
journal={The International Journal of Biostatistics},
volume={8},
number={1},
year={2012},
publisher={De Gruyter}
}
@article{liu2023causal,
title={Causal inference for longitudinal data based on historical controls},
author={Liu, Jeen and Zhang, Jane and Mitchell, Alan and Fang, Mindy and
Tian, Lu},
journal={Journal of Biopharmaceutical Statistics},
volume={33},
number={3},
pages={289--306},
year={2023},
publisher={Taylor \& Francis},
doi={10.1080/10543406.2022.2148164}
}