-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'lofar/add_pipeline_plots' into lofar/planewave_fitter
- Loading branch information
Showing
1 changed file
with
397 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,397 @@ | ||
""" | ||
This module contains the pipelineVisualizer class for LOFAR. | ||
.. moduleauthor:: Karen Terveer <[email protected]> | ||
""" | ||
|
||
import logging | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import radiotools.helper as hp | ||
import scipy | ||
import radiotools | ||
from matplotlib.cm import get_cmap | ||
from matplotlib.colors import Normalize | ||
|
||
from scipy.signal import resample | ||
|
||
from NuRadioReco.utilities import units | ||
from NuRadioReco.framework.parameters import stationParameters, channelParameters, showerParameters | ||
from NuRadioReco.modules.base.module import register_run | ||
|
||
|
||
class pipelineVisualizer: | ||
""" | ||
Creates debug plots from the LOFAR pipeline - | ||
This is the pipelineVisualizerTM for LOFAR. | ||
Any significant plots resulting from the pipeline | ||
should be added here by creating a function for them, | ||
and calling all functions sequentially. | ||
""" | ||
|
||
def __init__(self): | ||
|
||
self.logger = logging.getLogger("NuRadioReco.pipelineVisualizer") | ||
|
||
|
||
def begin(self, logger_level=logging.NOTSET): | ||
|
||
self.__logger_level = logger_level | ||
self.logger.setLevel(logger_level) | ||
|
||
|
||
def plot_polarization(self, event, detector): | ||
|
||
""" | ||
Plot the polarization of the electric field. | ||
This method calculates the stokes parameters of the pulse | ||
using get_stokes from framework.electric_field, and | ||
determines the polarization angle and degree, plotting | ||
them as arrows in the vxB and vxvxB plane. | ||
It estimates uncertainties by picking a pure noise value of | ||
stokes parameters, propagating through the angle and degree | ||
formulas and plotting them as arrows with reduced opacity. | ||
Author: Karen Terveer | ||
Parameters | ||
---------- | ||
event : Event object | ||
The event containing the stations and electric fields. | ||
detector : Detector object | ||
The detector object containing information about the detector. | ||
Returns | ||
------- | ||
fig_pol : matplotlib Figure object | ||
The generated figure object containing the polarization plot. | ||
""" | ||
|
||
from NuRadioReco.framework.electric_field import get_stokes | ||
|
||
fig_pol, ax = plt.subplots(figsize=(8,7)) | ||
|
||
triggered_station_ids = [station.get_id() for station in event.get_stations() if station.get_parameter(stationParameters.triggered)] | ||
num_stations = len(triggered_station_ids) | ||
cmap = get_cmap('jet') | ||
norm = Normalize(vmin=0, vmax=num_stations-1) | ||
|
||
lora_core = event.get_hybrid_information().get_hybrid_shower("LORA").get_parameter(showerParameters.core) | ||
|
||
try: | ||
core = event.get_first_shower().get_parameter(showerParameters.core) | ||
|
||
except: | ||
self.logger.warning("No radio core found, using LORA core instead") | ||
core = lora_core | ||
|
||
for i, station in enumerate(event.get_stations()): | ||
#for station in event.get_stations(): | ||
|
||
if station.get_parameter(stationParameters.triggered): | ||
|
||
zenith = station.get_parameter(stationParameters.cr_zenith) | ||
azimuth = station.get_parameter(stationParameters.cr_azimuth) | ||
cs = radiotools.coordinatesystems.cstrafo( | ||
zenith, azimuth, magnetic_field_vector=None, site="lofar") | ||
efields = station.get_electric_fields() | ||
|
||
station_pos = detector.get_absolute_position(station.get_id()) | ||
station_pos_vB = cs.transform_to_vxB_vxvxB(station_pos, core=core)[0] | ||
station_pos_vvB = cs.transform_to_vxB_vxvxB(station_pos, core=core)[1] | ||
|
||
ax.scatter(station_pos_vB, station_pos_vvB, color=cmap(norm(i)), s=20, label=f'Station CS{station.get_id():03d}') | ||
|
||
for field in efields: | ||
|
||
ids = field.get_channel_ids() | ||
pos = station_pos + detector.get_relative_position(station.get_id(), ids[0]) | ||
|
||
# transform to vxB and vxvxB, assuming the LORA core reco. | ||
# This is likely NOT the correct core position, | ||
# it has to be determined from the radio data later | ||
|
||
pos_vB = cs.transform_to_vxB_vxvxB(pos, core=core)[0] | ||
pos_vvB = cs.transform_to_vxB_vxvxB(pos, core=core)[1] | ||
|
||
pulse_window_start, pulse_window_end = station.get_channel(ids[0]).get_parameter(channelParameters.signal_regions) | ||
pulse_window_len = pulse_window_end - pulse_window_start | ||
|
||
trace = field.get_trace()[:,pulse_window_start:pulse_window_end] | ||
|
||
efield_trace_vxB_vxvxB = cs.transform_to_vxB_vxvxB( | ||
cs.transform_from_onsky_to_ground(trace) | ||
) | ||
|
||
#get stokes parameters | ||
stokes = get_stokes(*efield_trace_vxB_vxvxB[:2], window_samples=64) | ||
|
||
stokes_max = np.argmax(stokes[0]) | ||
|
||
I = stokes[0,stokes_max] | ||
Q = stokes[1,stokes_max] | ||
U = stokes[2,stokes_max] | ||
V = stokes[3,stokes_max] | ||
|
||
# get stokes uncertainties by picking a pure noise value | ||
I_sigma = stokes[0, stokes_max-pulse_window_len//4] | ||
Q_sigma = stokes[1, stokes_max-pulse_window_len//4] | ||
U_sigma = stokes[2, stokes_max-pulse_window_len//4] | ||
V_sigma = stokes[3, stokes_max-pulse_window_len//4] | ||
|
||
pol_angle = 0.5 * np.arctan2(U,Q) | ||
pol_angle_sigma= np.sqrt((U_sigma**2*(0.5*Q/(U**2+Q**2))**2 + Q_sigma**2*(0.5*U/(U**2+Q**2))**2)) | ||
|
||
# if the polarization deviates from the vxB direction by more than 80 degrees, | ||
# this could indicate something wrong with the antenna. Show a warning including | ||
# the channel ids | ||
if np.abs(0.5 * np.arctan2(U,Q)) > 80*np.pi/180: | ||
self.logger.warning("strange polarization direction in channel group %s" % ids) | ||
|
||
pol_degree= np.sqrt(U**2 + Q**2 + V**2) / I | ||
pol_degree *= 7 # scale for better visibility | ||
|
||
dx = pol_degree * np.cos(pol_angle) | ||
dy = pol_degree * np.sin(pol_angle) | ||
|
||
dx_sigma_plus = pol_degree * np.cos(pol_angle + pol_angle_sigma) | ||
dy_sigma_plus = pol_degree * np.sin(pol_angle + pol_angle_sigma) | ||
|
||
dx_sigma_minus = pol_degree * np.cos(pol_angle - pol_angle_sigma) | ||
dy_sigma_minus = pol_degree * np.sin(pol_angle - pol_angle_sigma) | ||
|
||
ax.arrow(pos_vB, pos_vvB, dx_sigma_plus, dy_sigma_plus, head_width=2, head_length=5, fc=cmap(norm(i)), ec = cmap(norm(i)), alpha=0.5) | ||
ax.arrow(pos_vB, pos_vvB, dx_sigma_minus, dy_sigma_minus, head_width=2, head_length=5, ec = cmap(norm(i)), fc=cmap(norm(i)), alpha=0.5) | ||
ax.arrow(pos_vB, pos_vvB, dx, dy, head_width=2, head_length=6, fc=cmap(norm(i)), ec = cmap(norm(i))) | ||
|
||
if (core != lora_core).all(): | ||
lora_vB = cs.transform_to_vxB_vxvxB(lora_core, core=core)[0] | ||
lora_vvB = cs.transform_to_vxB_vxvxB(lora_core, core=core)[1] | ||
ax.scatter(lora_vB, lora_vvB, color='tab:red', s=50, label='LORA core', marker = 'x') | ||
label = 'radio core' | ||
else: | ||
label = 'LORA core' | ||
|
||
ax.scatter([0], [0], color='black', s=50, label=label, marker = 'x') | ||
ax.legend() | ||
ax.set_xlabel('Direction along $v \\times B$ [m]') | ||
ax.set_ylabel('Direction along $v \\times (v \\times B)$ [m]') | ||
|
||
return fig_pol | ||
|
||
def show_direction_plot(self, event): | ||
|
||
""" | ||
Create the final plot for the plane wave fit direction | ||
reconstruction. Author: Philipp Laub | ||
Parameters | ||
---------- | ||
event : Event object | ||
The event for which to show the final plots. | ||
Returns | ||
------- | ||
fig_dir : matplotlib Figure object | ||
The generated figure object containing the direction plot. | ||
""" | ||
|
||
# plot reconstructed directions of all stations and compare to LORA in polar plot: | ||
fig_dir, ax = plt.subplots(subplot_kw={'projection': 'polar'}) | ||
ax.set_theta_zero_location('E') | ||
ax.set_theta_direction(1) | ||
|
||
triggered_station_ids = [station.get_id() for station in event.get_stations() if station.get_parameter(stationParameters.triggered)] | ||
num_stations = len(triggered_station_ids) | ||
cmap = get_cmap('jet') | ||
norm = Normalize(vmin=0, vmax=num_stations-1) | ||
|
||
for i, station in enumerate(event.get_stations()): | ||
if station.get_parameter(stationParameters.triggered): | ||
zenith = station.get_parameter(stationParameters.cr_zenith) | ||
azimuth = station.get_parameter(stationParameters.cr_azimuth) | ||
ax.plot(azimuth, | ||
zenith, | ||
label=f'Station CS{station.get_id():03d}', | ||
marker='P', | ||
markersize=7, | ||
linestyle='', | ||
color=cmap(norm(i)) | ||
) | ||
|
||
ax.plot(event.get_hybrid_information().get_hybrid_shower("LORA").get_parameter(showerParameters.azimuth), | ||
event.get_hybrid_information().get_hybrid_shower("LORA").get_parameter(showerParameters.zenith), | ||
label='LORA', | ||
marker="X", | ||
markersize=7, | ||
linestyle='', | ||
color='black') | ||
ax.legend() | ||
plt.title("Reconstructed arrival directions") | ||
|
||
return fig_dir | ||
|
||
def show_time_fluence_plot(self, event, detector, min_number_good_antennas=4): | ||
|
||
""" | ||
Create the final plot for the plane wave fit, including | ||
timing and pseudofluence. Author: Philipp Laub | ||
Parameters | ||
---------- | ||
event : Event object | ||
The event for which to show the final plots. | ||
detector : Detector object | ||
The detector for which to show the final plots. | ||
min_number_good_antennas : int, default=4 | ||
The minimum number of good antennas that should be | ||
present in a station to consider it for the fit. | ||
Returns | ||
------- | ||
fig_pol : matplotlib Figure object | ||
The generated figure object containing the polarization plot. | ||
""" | ||
|
||
# plot the antenna positions and mark arrival time by color and "fluence" by markersize. | ||
# Also indicate the reconstructed arrival direction per station via an arrow. | ||
|
||
from astropy.time import Time | ||
|
||
time = detector.get_detector_time().utc | ||
|
||
if time.mjd < 56266: | ||
self.logger.warning("Event was before Dec 1, 2012. The non-core station clocks might be off.") | ||
|
||
good_antennas_dict = {} | ||
|
||
for station in event.get_stations(): | ||
if station.get_parameter(stationParameters.triggered): | ||
good_antennas_dict[station.get_id()] = [] | ||
flagged_channels = station.get_parameter(stationParameters.flagged_channels) | ||
# Get all group IDs which are still present in the station | ||
station_channel_group_ids = set([channel.get_group_id() for channel in station.iter_channels()]) | ||
|
||
# Get the dominant polarisation orientation as calculated by stationPulseFinder | ||
dominant_orientation = station.get_parameter(stationParameters.cr_dominant_polarisation) | ||
|
||
good_channel_pair_ids = np.zeros((len(station_channel_group_ids), 2), dtype=int) | ||
for ind, channel_group_id in enumerate(station_channel_group_ids): | ||
for channel in station.iter_channel_group(channel_group_id): | ||
if np.all(detector.get_antenna_orientation(station.get_id(), channel.get_id()) == dominant_orientation): | ||
good_channel_pair_ids[ind, 0] = channel.get_id() | ||
else: | ||
good_channel_pair_ids[ind, 1] = channel.get_id() | ||
|
||
# Check if dominant channel has been flagged | ||
channel = station.get_channel(good_channel_pair_ids[ind, 0]) | ||
if channel.get_id() not in flagged_channels: | ||
good_antennas_dict[station.get_id()].append(channel.get_id()) | ||
|
||
fig_time, ax = plt.subplots(dpi=150, figsize=(8, 5)) | ||
|
||
triggered_station_ids = [station.get_id() for station in event.get_stations() if station.get_parameter(stationParameters.triggered)] | ||
num_stations = len(triggered_station_ids) | ||
cmap = get_cmap('jet') | ||
norm = Normalize(vmin=0, vmax=num_stations-1) | ||
|
||
fluences = [] | ||
positions = [] | ||
SNRs = [] | ||
for station in event.get_stations(): | ||
if station.get_parameter(stationParameters.triggered): | ||
zenith = station.get_parameter(stationParameters.cr_zenith) | ||
azimuth = station.get_parameter(stationParameters.cr_azimuth) | ||
good_antennas = good_antennas_dict[station.get_id()] | ||
if len(good_antennas) >= min_number_good_antennas: | ||
for antenna in good_antennas: | ||
positions.append(detector.get_relative_position(station.get_id(), antenna) + detector.get_absolute_position(station.get_id())) | ||
channel = station.get_channel(antenna) | ||
SNRs.append(channel.get_parameter(channelParameters.SNR)) | ||
fluences.append(np.sum(np.square(channel.get_trace()))) | ||
station_pos = detector.get_absolute_position(station.get_id()) | ||
ax.quiver(station_pos[0], station_pos[1], | ||
np.cos(azimuth), np.sin(azimuth), | ||
color='black', | ||
scale=0.02, | ||
scale_units='xy', | ||
angles='uv', | ||
width=0.005) | ||
|
||
timelags = [] | ||
for station in event.get_stations(): | ||
if station.get_parameter(stationParameters.triggered): | ||
good_antennas = good_antennas_dict[station.get_id()] | ||
if len(good_antennas) >= min_number_good_antennas: | ||
for channel_id in good_antennas: | ||
timelags.append(station.get_channel(channel_id).get_parameter(channelParameters.signal_time)) | ||
|
||
for i, station in enumerate(event.get_stations()): | ||
# plot absolute station positions | ||
if station.get_parameter(stationParameters.triggered): | ||
station_pos = detector.get_absolute_position(station.get_id()) | ||
ax.scatter(station_pos[0], station_pos[1], color=cmap(norm(i)), s=20, label=f'Station CS{station.get_id():03d}') | ||
|
||
timelags = np.array(timelags) | ||
timelags -= timelags[0] # get timelags wrt 1st antenna | ||
# plot all locations and use arrival time for color and fluence for marker size and add a colorbar | ||
positions = np.array(positions) | ||
fluences = np.array(fluences) | ||
SNRs = np.array(SNRs) | ||
fluence_norm = Normalize(vmin=np.min(fluences), vmax=np.max(fluences)) | ||
sc = ax.scatter( | ||
positions[:,0], | ||
positions[:,1], | ||
c=timelags, | ||
s=15 * fluence_norm(fluences), | ||
cmap='viridis', | ||
zorder=-1) | ||
|
||
ax.set_aspect('equal') | ||
plt.colorbar(sc, label='Relative arrival time [ns]', shrink=0.7) | ||
ax.set_xlabel('Meters east [m]') | ||
ax.set_ylabel('Meters north [m]') | ||
plt.legend() | ||
plt.title("Antenna positions and arrival time") | ||
|
||
return fig_time | ||
|
||
|
||
@register_run() | ||
def run(self, event, detector, save_dir='.', polarization=False, direction=False): | ||
""" | ||
Produce pipeline plots for the given event. | ||
Parameters | ||
---------- | ||
event : Event object | ||
The event for which to visualize the pipeline. | ||
detector : Detector object | ||
The detector for which to visualize the pipeline. | ||
save_dir : str, optional | ||
The directory to save the plots to. Default is the | ||
current directory. | ||
""" | ||
|
||
plots = [] | ||
if polarization: | ||
pol_plot = self.plot_polarization(event, detector) | ||
plots.append(pol_plot) | ||
pol_plot.savefig(f'{save_dir}/polarization_plot_{event.get_id()}.png') | ||
|
||
if direction: | ||
dir_plot = self.show_direction_plot(event) | ||
plots.append(dir_plot) | ||
dir_plot.savefig(f'{save_dir}/direction_plot_{event.get_id()}.png') | ||
|
||
time_fluence_plot = self.show_time_fluence_plot(event, detector) | ||
plots.append(time_fluence_plot) | ||
time_fluence_plot.savefig(f'{save_dir}/time_fluence_plot_{event.get_id()}.png') | ||
|
||
self.plots = [plot for plot in plots] | ||
|
||
|
||
|
||
def end(self): | ||
|
||
pass |