-
Notifications
You must be signed in to change notification settings - Fork 0
/
Upto.thy
80 lines (72 loc) · 1.97 KB
/
Upto.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory Upto
imports "~~/src/HOL/Main"
begin
(* FIXME: in fact, overhaul this whole business now that interval is defined properly in the dist *)
(* FIXME: move to distribution *)
instantiation nat :: finite_intvl_succ
begin
definition
suc_nat_def: "List.finite_intvl_succ_class.successor == Suc"
instance
apply intro_classes
apply (auto simp: suc_nat_def)
done
end
lemma (in finite_intvl_succ) singleton_intvl [simp]:
"[x..x] = [x]"
apply (subst upto_rec)
apply simp
apply (clarsimp simp: upto_def)
apply (subgoal_tac "{successor x ..x} = {}")
apply simp
apply (insert successor_incr [of x])
apply simp
done
lemma (in finite_intvl_succ) upto_suc_rec:
"[n..successor m] = (if n \<le> successor m then [n..m] @ [successor m] else [])"
apply simp
apply (rule conjI)
prefer 2
apply (clarsimp simp: upto_def)
apply clarsimp
apply (simp add: upto_def sorted_list_of_set_def)
apply (rule the1_equality[OF finite_sorted_distinct_unique])
apply (simp add:finite_intvl)
apply(rule the1I2[OF finite_sorted_distinct_unique])
apply (simp add:finite_intvl)
apply simp
apply (insert successor_incr [of m])
apply clarsimp
apply (rule conjI)
apply rule
apply fastforce
apply (clarsimp simp: not_le)
apply (cut_tac a=m in ord_discrete)
apply clarsimp
apply (erule_tac x=xa in allE)
apply simp
apply (clarsimp simp: sorted_append)
apply (fastforce)
done
lemma upto_Suc:
"[n..Suc m] = (if n \<le> Suc m then [n..m] @ [Suc m] else [])"
apply (fold suc_nat_def)
apply (rule upto_suc_rec)
done
lemma upto_upt:
"[n..m] = [n..<Suc m]"
apply (induct m)
apply (clarsimp simp: upto_rec suc_nat_def)
apply (simp add: upto_Suc del: upt.simps)
apply (clarsimp simp add: upto_Suc)
done
end