-
Notifications
You must be signed in to change notification settings - Fork 0
/
Isolation_S.thy
110 lines (91 loc) · 3.73 KB
/
Isolation_S.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
(*
* Copyright 2014, General Dynamics C4 Systems
*
* This software may be distributed and modified according to the terms of
* the GNU General Public License version 2. Note that NO WARRANTY is provided.
* See "LICENSE_GPLv2.txt" for details.
*
* @TAG(GD_GPL)
*)
theory Isolation_S
imports Islands_S
begin
definition
set_flow :: "state \<Rightarrow> (entity_id set \<times> entity_id set) set" where
"set_flow s \<equiv> {(X,Y). \<exists>x \<in> X. \<exists>y \<in> Y.
(read_cap x :< caps_of s y \<or>
write_cap y :< caps_of s x)}"
lemma set_flow_def2:
"(X, Y) \<in> set_flow s = (\<exists>x \<in> X. \<exists>y \<in> Y.
(read_cap x :< caps_of s y \<or>
write_cap y :< caps_of s x))"
by (simp add: set_flow_def)
definition
flow :: "state \<Rightarrow> (entity_id \<times> entity_id) set" where
"flow s \<equiv> {(x,y). (island s x, island s y) \<in> set_flow s}"
lemma flow_def2:
"(x, y) \<in> flow s = ((island s x, island s y) \<in> set_flow s)"
by (simp add: flow_def)
abbreviation
in_flow :: "state \<Rightarrow> entity_id \<Rightarrow> entity_id \<Rightarrow> bool" ("_ \<turnstile> _ \<leadsto> _" [60,0,60] 61)
where
"s \<turnstile> x \<leadsto> y \<equiv> (x,y) \<in> flow s"
definition
flow_trans :: "state \<Rightarrow> (entity_id \<times> entity_id) set" ("flow\<^sup>*") where
"flow_trans s \<equiv> (flow s)\<^sup>*"
abbreviation
in_flow_trans :: "state \<Rightarrow> entity_id \<Rightarrow> entity_id \<Rightarrow> bool" ("_ \<turnstile> _ \<leadsto>* _" [60,0,60] 61)
where
"s \<turnstile> x \<leadsto>* y == (x,y) \<in> flow_trans s"
notation (latex output)
in_flow_trans ("_ \<turnstile> _ \<leadsto>\<^sup>* _" [60,0,60] 61)
translations
"\<not> (s \<turnstile> x \<leadsto> y)" <= "(x,y) \<notin> CONST flow s"
"\<not> (s \<turnstile> x \<leadsto>* y)" <= "(x,y) \<notin> CONST flow_trans s"
(* Proof *)
lemma rights_extra_rights_read_cap [simp]:
"rights (extra_rights (read_cap e)) = {Read}"
by (simp add: rights_extra_rights)
lemma rights_extra_rights_write_cap [simp]:
"rights (extra_rights (write_cap e)) = {Write}"
by (simp add: rights_extra_rights)
lemma flow_trans_refl [simp]:
"s \<turnstile> x \<leadsto>* x"
by (metis flow_trans_def rtrancl.rtrancl_refl)
lemma flow_connected_step:
"\<lbrakk>s' \<turnstile> x \<leadsto>* y; s' \<in> step cmd s\<rbrakk> \<Longrightarrow>
s \<turnstile> x \<leadsto>* y"
apply (erule rtrancl_induct [where r="flow s'",
simplified flow_trans_def[symmetric]])
apply simp
apply (subgoal_tac "s \<turnstile> y \<leadsto> z")
apply (fastforce simp: flow_trans_def rtrancl.rtrancl_into_rtrancl)
apply (clarsimp simp: flow_def island_def set_flow_def)
apply (frule_tac x=y in tgs_connected_preserved_step, simp)
apply (frule_tac x=z in tgs_connected_preserved_step, simp)
apply (clarsimp simp: has_at_least_def)
apply (erule disjE)
apply clarsimp
apply (drule (1) caps_of_op)
apply (clarsimp simp: has_at_least_def)
apply (metis (no_types) tgs_connected_trans subsetD)
apply clarsimp
apply (drule (1) caps_of_op)
apply (clarsimp simp: has_at_least_def)
apply (metis (no_types) tgs_connected_trans subsetD)
done
lemma flow_connected [rule_format]:
"\<forall>s'. s' \<in> execute cmds s \<longrightarrow>
s' \<turnstile> x \<leadsto>* y \<longrightarrow>
s \<turnstile> x \<leadsto>* y"
apply (induct_tac cmds, simp)
apply clarsimp
apply (drule (1) flow_connected_step)
apply auto
done
lemma information_flow:
"\<lbrakk>s' \<in> execute cmds s;
\<not> s \<turnstile> x \<leadsto>* y\<rbrakk> \<Longrightarrow>
\<not> s' \<turnstile> x \<leadsto>* y"
by (auto simp: flow_connected)
end