Skip to content

Latest commit

 

History

History
208 lines (160 loc) · 4.21 KB

model_outputs.md

File metadata and controls

208 lines (160 loc) · 4.21 KB
jupytext kernelspec
formats text_representation
ipynb,md:myst
extension format_name format_version jupytext_version
.md
myst
0.13
1.14.5
display_name language name
Python 3 (ipykernel)
python
python3
import json

from survey_analysis import format_data, fit_model
responses = format_data('public_survey_data.csv')
# now let's run some basic analyses to check against SurveyMonkey outputs
responses['is_member'].value_counts(normalize=True)
responses['geographic_region'].value_counts(normalize=True)
responses['career_stage'].value_counts(normalize=True)
# for the other questions, we can load in our sidecar JSON
# with question-level metadata
with open('levels.json') as f:
    queries = json.load(f)
print(f'There are {len(queries.keys())} questions to consider.') 
print(queries.keys())
question = 'job_board_access'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'job_board_content'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'email_access'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'email_content'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'blog_access'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'blog_content'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'twitter_access'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'twitter_content'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'podcast_access'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'podcast_content'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'facebook_content'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'youtube_access'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'youtube_content'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'linkedin_access'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'linkedin_content'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'ondemand_access'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'ondemand_content'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'content_platform'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'sig_platform'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())
question = 'content_importance'
scale_values = queries[question]

res = fit_model(responses, question, scale_values)
print(res.summary())