-
Notifications
You must be signed in to change notification settings - Fork 0
/
camera.h
469 lines (441 loc) · 17.4 KB
/
camera.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#pragma once
#include "redner.h"
#include "vector.h"
#include "buffer.h"
#include "ray.h"
#include "transform.h"
#include "ptr.h"
struct Camera {
Camera() {}
Camera(int width,
int height,
ptr<float> cam_to_world,
ptr<float> world_to_cam,
float fov_factor,
float clip_near,
bool fisheye)
: width(width),
height(height),
cam_to_world(cam_to_world.get()),
world_to_cam(inverse(this->cam_to_world)),
fov_factor(fov_factor),
clip_near(clip_near),
fisheye(fisheye) {}
int width, height;
Matrix4x4 cam_to_world;
Matrix4x4 world_to_cam;
float fov_factor;
float clip_near;
bool fisheye;
};
struct DCamera {
DCamera() {}
DCamera(ptr<float> cam_to_world,
ptr<float> world_to_cam,
ptr<float> fov_factor)
: cam_to_world(cam_to_world.get()),
world_to_cam(world_to_cam.get()),
fov_factor(fov_factor.get()) {}
float *cam_to_world;
float *world_to_cam;
float *fov_factor;
};
struct DCameraInst {
Matrix4x4 cam_to_world = Matrix4x4();
Matrix4x4 world_to_cam = Matrix4x4();
float fov_factor = 0.f;
DEVICE inline DCameraInst operator+(const DCameraInst &other) const {
return DCameraInst{cam_to_world + other.cam_to_world,
world_to_cam + other.world_to_cam,
fov_factor + other.fov_factor};
}
};
template <typename T>
struct TCameraSample {
TVector2<T> xy;
};
using CameraSample = TCameraSample<Real>;
DEVICE
inline
Ray sample_primary(const Camera &camera,
const Vector2 &screen_pos) {
if (camera.fisheye) {
// Equi-angular projection
auto org = xfm_point(camera.cam_to_world, Vector3{0, 0, 0});
// x, y to polar coordinate
auto x = 2.f * (screen_pos[0] - 0.5f);
auto y = 2.f * (screen_pos[1] - 0.5f);
if (x * x + y * y > 1.f) {
return Ray{org, Vector3{0, 0, 0}};
}
auto r = sqrt(x*x + y*y);
auto phi = atan2(y, x);
// polar coordinate to spherical, map r to angle through polynomial
auto theta = r * Real(M_PI) / 2.f;
auto sin_phi = sin(phi);
auto cos_phi = cos(phi);
auto sin_theta = sin(theta);
auto cos_theta = cos(theta);
auto dir = Vector3{-cos_phi * sin_theta, -sin_phi * sin_theta, cos_theta};
auto n_dir = normalize(dir);
auto world_dir = xfm_vector(camera.cam_to_world, n_dir);
return Ray{org, world_dir};
} else {
// Linear projection
auto org = xfm_point(camera.cam_to_world, Vector3{0, 0, 0});
// [0, 1] x [0, 1] -> [-1, 1] x [1, -1]/aspect_ratio
auto aspect_ratio = Real(camera.height) / Real(camera.width);
auto ndc = Vector2{(screen_pos[0] - 0.5f) * 2.f,
(screen_pos[1] - 0.5f) * (-2.f) / aspect_ratio};
// Assume film at z=1, thus w=tan(fov), h=tan(fov) / aspect_ratio
auto dir = Vector3{camera.fov_factor * ndc[0], camera.fov_factor * ndc[1], Real(1)};
auto n_dir = normalize(dir);
auto world_dir = xfm_vector(camera.cam_to_world, n_dir);
return Ray{org, world_dir};
}
}
void sample_primary_rays(const Camera &cam,
const BufferView<CameraSample> &samples,
BufferView<Ray> rays,
bool use_gpu);
DEVICE
inline void d_sample_primary_ray(const Camera &camera,
const Vector2 &screen_pos,
const DRay &d_ray,
DCameraInst &d_camera) {
if (camera.fisheye) {
// Equi-angular projection
// auto org = xfm_point(camera.cam_to_world, Vector3{0, 0, 0});
// x, y to polar coordinate
auto x = 2.f * (screen_pos[0] - 0.5f);
auto y = 2.f * (screen_pos[1] - 0.5f);
if (x * x + y * y > 1.f) {
return;
}
auto r = sqrt(x*x + y*y);
auto phi = atan2(y, x);
// polar coordinate to spherical, map r to angle through polynomial
auto theta = r * Real(M_PI) / 2.f;
auto sin_phi = sin(phi);
auto cos_phi = cos(phi);
auto sin_theta = sin(theta);
auto cos_theta = cos(theta);
auto dir = Vector3{-cos_phi * sin_theta,
-sin_phi * sin_theta,
cos_theta};
auto n_dir = normalize(dir);
// auto world_dir = xfm_vector(camera.cam_to_world, n_dir);
// ray = Ray{org, world_dir};
auto d_org = d_ray.org;
auto d_world_dir = d_ray.dir;
auto d_n_dir = Vector3{0, 0, 0};
// world_dir = xfm_vector(camera.cam_to_world, n_dir)
d_xfm_vector(camera.cam_to_world, n_dir, d_world_dir,
d_camera.cam_to_world, d_n_dir);
// No need to propagate to x, y
// org = xfm_point(camera.cam_to_world, Vector3{0, 0, 0})
auto cam_org = Vector3{0, 0, 0};
d_xfm_point(camera.cam_to_world, Vector3{0, 0, 0}, d_org,
d_camera.cam_to_world, cam_org);
} else {
// Linear projection
// auto org = xfm_point(camera.cam_to_world, Vector3{0, 0, 0});
// [0, 1] x [0, 1] -> [-1, 1] x [1, -1]/aspect_ratio
auto aspect_ratio = Real(camera.height) / Real(camera.width);
auto ndc = Vector2{(screen_pos[0] - 0.5f) * 2.f,
(screen_pos[1] - 0.5f) * (-2.f) / aspect_ratio};
// Assume film at z=1, thus w=tan(fov), h=tan(fov) / aspect_ratio
auto dir = Vector3{camera.fov_factor * ndc[0],
camera.fov_factor * ndc[1],
Real(1)};
auto n_dir = normalize(dir);
// auto world_dir = xfm_vector(camera.cam_to_world, n_dir);
// ray = Ray{org, world_dir};
auto d_org = d_ray.org;
auto d_world_dir = d_ray.dir;
auto d_n_dir = Vector3{0, 0, 0};
// world_dir = xfm_vector(camera.cam_to_world, n_dir)
d_xfm_vector(camera.cam_to_world, n_dir, d_world_dir,
d_camera.cam_to_world, d_n_dir);
// n_dir = normalize(dir)
auto d_dir = d_normalize(dir, d_n_dir);
// dir = Vector3{camera.fov_factor * ndc[0],
// camera.fov_factor * ndc[1],
// Real(1)};
d_camera.fov_factor += d_dir[0] * ndc[0];
d_camera.fov_factor += d_dir[1] * ndc[1];
// org = xfm_point(camera.cam_to_world, Vector3{0, 0, 0})
auto d_cam_org = Vector3{0, 0, 0};
d_xfm_point(camera.cam_to_world, Vector3{0, 0, 0}, d_org,
d_camera.cam_to_world, d_cam_org);
}
}
template <typename T>
DEVICE
TVector2<T> camera_to_screen(const Camera &camera,
const TVector3<T> &pt) {
if (camera.fisheye) {
// Equi-angular projection
auto dir = normalize(pt);
auto cos_theta = dir[2];
auto phi = atan2(dir[1], dir[0]);
auto theta = acos(cos_theta);
auto r = theta * 2.f / Real(M_PI);
auto x = 0.5f * (-r * cos(phi) + 1.f);
auto y = 0.5f * (-r * sin(phi) + 1.f);
return TVector2<T>{x, y};
} else {
// Linear projection
auto aspect_ratio = Real(camera.height) / Real(camera.width);
auto x = (pt[0] / (pt[2] * camera.fov_factor) + 1.f) * 0.5f;
auto y = (-pt[1] / (pt[2] * camera.fov_factor * aspect_ratio) + 1.f) * 0.5f;
return TVector2<T>{x, y};
}
}
template <typename T>
DEVICE
inline void d_camera_to_screen(const Camera &camera,
const TVector3<T> &pt,
T dx, T dy,
DCameraInst &d_camera,
TVector3<T> &d_pt) {
if (camera.fisheye) {
auto dir = normalize(pt);
auto phi = atan2(dir[1], dir[0]);
auto theta = acos(dir[2]);
auto r = theta * 2.f / Real(M_PI);
// x = 0.5f * (-r * cos(phi) + 1.f)
// y = 0.5f * (-r * sin(phi) + 1.f)
auto dr = -0.5f * (cos(phi) * dx + sin(phi) * dy);
auto dphi = 0.5f * r * sin(phi) * dx -
0.5f * r * cos(phi) * dy;
// r = theta * 2.f / float(M_PI)
auto dtheta = dr * (2.f / Real(M_PI));
// theta = acos(cos_theta)
auto d_cos_theta = -dtheta / sqrt(1.f - dir[2] * dir[2]);
// phi = atan2(dir[1], dir[0])
auto atan2_tmp = dir[0] * dir[0] + dir[1] * dir[1];
auto ddir0 = -dphi * dir[1] / atan2_tmp;
auto ddir1 = dphi * dir[0] / atan2_tmp;
// cos_theta = dir[2]
auto ddir2 = d_cos_theta;
// Backprop dir = normalize(pt);
auto ddir = Vector3{ddir0, ddir1, ddir2};
d_pt += d_normalize(pt, ddir);
} else {
auto aspect_ratio = Real(camera.height) / Real(camera.width);
// x = 0.5 * pt[0] / (pt[2] * camera.fov_factor) + 0.5
d_pt[0] += ((dx * 0.5f) / (pt[2] * camera.fov_factor));
d_pt[2] -= (0.5f * dx * pt[0] / (square(pt[2]) * camera.fov_factor));
d_camera.fov_factor -=
(0.5f * dx * pt[0] / (pt[2] * square(camera.fov_factor)));
// y = (-pt[1] / (pt[2] * camera.fov_factor * aspect_ratio) + 1.f) * 0.5f
d_pt[1] -= (dy * 0.5f) /
(pt[2] * camera.fov_factor * aspect_ratio);
d_pt[2] += (0.5f * dy * pt[1] / (square(pt[2]) * camera.fov_factor * aspect_ratio));
d_camera.fov_factor +=
(0.5f * dy * pt[1] / (pt[2] * square(camera.fov_factor) * aspect_ratio));
}
}
template <typename T>
DEVICE
bool project(const Camera &camera,
const TVector3<T> &p0,
const TVector3<T> &p1,
TVector2<T> &pp0,
TVector2<T> &pp1) {
auto p0_local = xfm_point(camera.world_to_cam, p0);
auto p1_local = xfm_point(camera.world_to_cam, p1);
if (p0_local[2] < camera.clip_near && p1_local[2] < camera.clip_near) {
return false;
}
// clip against z = clip_near
if (p0_local[2] < camera.clip_near) {
// a ray from p1 to p0
auto dir = p0_local - p1_local;
// intersect with plane z = clip_near
auto t = -(p1_local[2] - camera.clip_near) / dir[2];
p0_local = p1_local + t * dir;
} else if (p1_local[2] < camera.clip_near) {
// a ray from p1 to p0
auto dir = p1_local - p0_local;
// intersect with plane z = clip_near
auto t = -(p0_local[2] - camera.clip_near) / dir[2];
p1_local = p0_local + t * dir;
}
// project to 2d screen
pp0 = camera_to_screen(camera, p0_local);
pp1 = camera_to_screen(camera, p1_local);
return true;
}
DEVICE
inline void d_project(const Camera &camera,
const Vector3 &p0,
const Vector3 &p1,
Real dp0x, Real dp0y,
Real dp1x, Real dp1y,
DCameraInst &d_camera,
Vector3 &d_p0,
Vector3 &d_p1,
bool debug = false) {
auto p0_local = xfm_point(camera.world_to_cam, p0);
auto p1_local = xfm_point(camera.world_to_cam, p1);
if (p0_local[2] < camera.clip_near && p1_local[2] < camera.clip_near) {
return;
}
auto clipped_p0_local = p0_local;
auto clipped_p1_local = p1_local;
// clip against z = clip_near
if (p0_local[2] < camera.clip_near) {
// a ray from p1 to p0
auto dir = p0_local - p1_local;
// intersect with plane z = clip_near
auto t = -(p1_local[2] - camera.clip_near) / dir[2];
clipped_p0_local = p1_local + t * dir;
} else if (p1_local[2] < camera.clip_near) {
// a ray from p1 to p0
auto dir = p1_local - p0_local;
// intersect with plane z = clip_near
auto t = -(p0_local[2] - camera.clip_near) / dir[2];
clipped_p1_local = p0_local + t * dir;
}
// p0' = project_local(camera, clipped_p0_local)
// p1' = project_local(camera, clipped_p1_local)
auto dclipped_p0_local = Vector3{0, 0, 0};
auto dclipped_p1_local = Vector3{0, 0, 0};
d_camera_to_screen(camera, clipped_p0_local,
dp0x, dp0y, d_camera, dclipped_p0_local);
d_camera_to_screen(camera, clipped_p1_local,
dp1x, dp1y, d_camera, dclipped_p1_local);
auto dp0_local = Vector3{0.f, 0.f, 0.f};
auto dp1_local = Vector3{0.f, 0.f, 0.f};
// differentiate through clipping
if (p0_local[2] < camera.clip_near) {
auto dir = p0_local - p1_local;
auto t = -(p1_local[2] + camera.clip_near) / dir[2];
// clipped_p0_local = p1_local + t * dir
dp1_local += dclipped_p0_local;
auto dt = dot(dir, dclipped_p0_local);
auto ddir = t * dclipped_p0_local;
// t = -p1_local[2] / dir[2]
dp1_local[2] += (-dt / dir[2]);
ddir[2] -= dt * t / dir[2];
// dir = p0_local - p1_local;
dp0_local += ddir;
dp1_local -= ddir;
// clipped_p1_local = p1_local
dp1_local += dclipped_p1_local;
} else if (p1_local[2] < camera.clip_near) {
auto dir = p1_local - p0_local;
auto t = -(p0_local[2] + camera.clip_near) / dir[2];
// clipped_p1_local = p0_local + t * dir
dp0_local += dclipped_p1_local;
auto dt = dot(dir, dclipped_p1_local);
auto ddir = t * dclipped_p1_local;
// t = -p0_local[2] / dir[2]
dp0_local[2] += (-dt / dir[2]);
ddir[2] -= dt * t / dir[2];
// dir = p1_local - p0_local;
dp1_local += ddir;
dp0_local -= ddir;
// clipped_p0_local = p0_local
dp0_local += dclipped_p0_local;
} else {
dp0_local += dclipped_p0_local;
dp1_local += dclipped_p1_local;
}
// p0_local = xfm_point(camera.world_to_cam, p0)
// p1_local = xfm_point(camera.world_to_cam, p1)
d_xfm_point(camera.world_to_cam, p0, dp0_local, d_camera.world_to_cam, d_p0);
d_xfm_point(camera.world_to_cam, p1, dp1_local, d_camera.world_to_cam, d_p1);
}
template <typename T>
DEVICE
inline TVector3<T> screen_to_camera(const Camera &camera,
const TVector2<T> &screen_pos) {
if (camera.fisheye) {
// x, y to polar coordinate
auto x = 2.f * (screen_pos[0] - 0.5f);
auto y = 2.f * (screen_pos[1] - 0.5f);
auto r = sqrt(x*x + y*y);
auto phi = atan2(y, x);
// polar coordinate to spherical, map r linearly on angle
auto theta = r * Real(M_PI) / 2.f;
auto sin_phi = sin(phi);
auto cos_phi = cos(phi);
auto sin_theta = sin(theta);
auto cos_theta = cos(theta);
auto dir = TVector3<T>{
-cos_phi * sin_theta, -sin_phi * sin_theta, cos_theta};
return dir;
} else {
// Linear projection
// [0, 1] x [0, 1] -> [1, -1] -> [1, -1]/aspect_ratio
auto ndc = TVector2<T>{
(screen_pos[0] - 0.5f) * 2.f,
(screen_pos[1] - 0.5f) * -2.f /
(camera.height / Real(camera.width))};
// Assume film at z=1, thus w=tan(fov), h=tan(fov) / aspect_ratio
auto dir = TVector3<T>{
camera.fov_factor * ndc[0], camera.fov_factor * ndc[1], T(1)};
return dir;
}
}
template <typename T>
DEVICE
inline void d_screen_to_camera(const Camera &camera,
const TVector2<T> &screen_pos,
TVector3<T> &d_x,
TVector3<T> &d_y) {
if (camera.fisheye) {
// x, y to polar coordinate
auto x = 2.f * (screen_pos[0] - 0.5f);
auto y = 2.f * (screen_pos[1] - 0.5f);
auto r = sqrt(x*x + y*y);
auto phi = atan2(y, x);
// polar coordinate to spherical, map r linearly on angle
auto theta = r * Real(M_PI) / 2.f;
auto sin_phi = sin(phi);
auto cos_phi = cos(phi);
auto sin_theta = sin(theta);
auto cos_theta = cos(theta);
// d dir d screen_pos:
auto d_dir_x_d_phi = sin_phi * sin_theta;
auto d_dir_x_d_theta = -cos_phi * cos_theta;
auto d_dir_y_d_phi = -cos_phi * sin_theta;
auto d_dir_y_d_theta = -sin_phi * cos_theta;
auto d_dir_z_d_theta = -sin_theta;
auto d_phi_d_x = -y / (r*r);
auto d_phi_d_y = x / (r*r);
auto d_theta_d_x = (float(M_PI) / 2.f) * x / r;
auto d_theta_d_y = (float(M_PI) / 2.f) * y / r;
d_x = 2.f * TVector3<T>{
d_dir_x_d_phi * d_phi_d_x + d_dir_x_d_theta * d_theta_d_x,
d_dir_y_d_phi * d_phi_d_x + d_dir_y_d_theta * d_theta_d_x,
d_dir_z_d_theta * d_theta_d_x};
d_y = 2.f * TVector3<T>{
d_dir_x_d_phi * d_phi_d_y + d_dir_x_d_theta * d_theta_d_y,
d_dir_y_d_phi * d_phi_d_y + d_dir_y_d_theta * d_theta_d_y,
d_dir_z_d_theta * d_theta_d_y};
} else {
auto aspect_ratio = Real(camera.height) / Real(camera.width);
d_x = TVector3<T>{T(2) * camera.fov_factor, T(0), T(0)};
d_y = TVector3<T>{T(0), T(-2) * camera.fov_factor / aspect_ratio, T(0)};
}
}
DEVICE
inline bool in_screen(const Camera &cam, const Vector2 &pt) {
if (!cam.fisheye) {
return pt[0] >= 0.f && pt[0] < 1.f &&
pt[1] >= 0.f && pt[1] < 1.f;
} else {
auto dist_sq =
(pt[0] - 0.5f) * (pt[0] - 0.5f) + (pt[1] - 0.5f) * (pt[1] - 0.5f);
return dist_sq < 0.25f;
}
}
void accumulate_camera(const DCameraInst &d_camera_inst,
DCamera &d_camera,
bool use_gpu);
void test_sample_primary_rays(bool use_gpu);
void test_camera_derivatives();