-
Notifications
You must be signed in to change notification settings - Fork 0
/
load_serialized.cpp
288 lines (253 loc) · 8.22 KB
/
load_serialized.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#include "load_serialized.h"
#include <fstream>
#include <iostream>
#include "miniz.h"
// http://stackoverflow.com/questions/348833/how-to-know-the-exact-line-of-code-where-where-an-exception-has-been-caused
class fl_exception : public std::runtime_error {
std::string msg;
public:
fl_exception(const std::string &arg, const char *file, int line) : std::runtime_error(arg) {
std::ostringstream o;
o << file << ":" << line << ": " << arg;
msg = o.str();
}
~fl_exception() throw() {
}
const char *what() const throw() {
return msg.c_str();
}
};
#define Error(arg) throw fl_exception(arg, __FILE__, __LINE__);
#define MTS_FILEFORMAT_VERSION_V3 0x0003
#define MTS_FILEFORMAT_VERSION_V4 0x0004
#define ZSTREAM_BUFSIZE 32768
namespace py = pybind11;
enum ETriMeshFlags {
EHasNormals = 0x0001,
EHasTexcoords = 0x0002,
EHasTangents = 0x0004, // unused
EHasColors = 0x0008,
EFaceNormals = 0x0010,
ESinglePrecision = 0x1000,
EDoublePrecision = 0x2000
};
class ZStream {
public:
/// Create a new compression stream
ZStream(std::fstream &fs);
void read(void *ptr, size_t size);
virtual ~ZStream();
private:
std::fstream &fs;
size_t fsize;
z_stream m_inflateStream;
uint8_t m_inflateBuffer[ZSTREAM_BUFSIZE];
};
ZStream::ZStream(std::fstream &fs) : fs(fs) {
std::streampos pos = fs.tellg();
fs.seekg(0, fs.end);
fsize = fs.tellg();
fs.seekg(pos, fs.beg);
int windowBits = 15;
m_inflateStream.zalloc = Z_NULL;
m_inflateStream.zfree = Z_NULL;
m_inflateStream.opaque = Z_NULL;
m_inflateStream.avail_in = 0;
m_inflateStream.next_in = Z_NULL;
int retval = inflateInit2(&m_inflateStream, windowBits);
if (retval != Z_OK) {
Error("Could not initialize ZLIB");
}
}
void ZStream::read(void *ptr, size_t size) {
uint8_t *targetPtr = (uint8_t *)ptr;
while (size > 0) {
if (m_inflateStream.avail_in == 0) {
size_t remaining = fsize - fs.tellg();
m_inflateStream.next_in = m_inflateBuffer;
m_inflateStream.avail_in = (uInt)std::min(remaining, sizeof(m_inflateBuffer));
if (m_inflateStream.avail_in == 0) {
Error("Read less data than expected");
}
fs.read((char *)m_inflateBuffer, m_inflateStream.avail_in);
}
m_inflateStream.avail_out = (uInt)size;
m_inflateStream.next_out = targetPtr;
int retval = inflate(&m_inflateStream, Z_NO_FLUSH);
switch (retval) {
case Z_STREAM_ERROR: {
Error("inflate(): stream error!");
}
case Z_NEED_DICT: {
Error("inflate(): need dictionary!");
}
case Z_DATA_ERROR: {
Error("inflate(): data error!");
}
case Z_MEM_ERROR: {
Error("inflate(): memory error!");
}
};
size_t outputSize = size - (size_t)m_inflateStream.avail_out;
targetPtr += outputSize;
size -= outputSize;
if (size > 0 && retval == Z_STREAM_END) {
Error("inflate(): attempting to read past the end of the stream!");
}
}
}
ZStream::~ZStream() {
inflateEnd(&m_inflateStream);
}
void skip_to_idx(std::fstream &fs, const short version, const size_t idx) {
// Go to the end of the file to see how many components are there
fs.seekg(-sizeof(uint32_t), fs.end);
uint32_t count = 0;
fs.read((char *)&count, sizeof(uint32_t));
size_t offset = 0;
if (version == MTS_FILEFORMAT_VERSION_V4) {
fs.seekg(-sizeof(uint64_t) * (count - idx) - sizeof(uint32_t), fs.end);
fs.read((char *)&offset, sizeof(size_t));
} else { // V3
fs.seekg(-sizeof(uint32_t) * (count - idx + 1), fs.end);
uint32_t upos = 0;
fs.read((char *)&upos, sizeof(unsigned int));
offset = upos;
}
fs.seekg(offset, fs.beg);
// Skip the header
fs.ignore(sizeof(short) * 2);
}
template <typename Precision>
void load_position(ZStream &zs,
py::array_t<float> &vertices) {
assert(vertices.ndim() == 2);
auto v_acc = vertices.mutable_unchecked<2>();
for (int i = 0; i < vertices.shape()[0]; i++) {
Precision x, y, z;
zs.read(&x, sizeof(Precision));
zs.read(&y, sizeof(Precision));
zs.read(&z, sizeof(Precision));
v_acc(i, 0) = x;
v_acc(i, 1) = y;
v_acc(i, 2) = z;
}
}
template <typename Precision>
void load_normal(ZStream &zs,
py::array_t<float> &normals) {
assert(normals.ndim() == 2);
auto n_acc = normals.mutable_unchecked<2>();
for (int i = 0; i < normals.shape()[0]; i++) {
Precision x, y, z;
zs.read(&x, sizeof(Precision));
zs.read(&y, sizeof(Precision));
zs.read(&z, sizeof(Precision));
n_acc(i, 0) = x;
n_acc(i, 1) = y;
n_acc(i, 2) = z;
}
}
template <typename Precision>
void load_uv(ZStream &zs,
py::array_t<float> &uvs) {
assert(uvs.ndim() == 2);
auto uv_acc = uvs.mutable_unchecked<2>();
for (int i = 0; i < uvs.shape()[0]; i++) {
Precision u, v;
zs.read(&u, sizeof(Precision));
zs.read(&v, sizeof(Precision));
uv_acc(i, 0) = u;
uv_acc(i, 1) = v;
}
}
template <typename Precision>
void load_color(ZStream &zs,
py::array_t<float> &colors) {
assert(colors.ndim() == 2);
auto color_acc = colors.mutable_unchecked<2>();
for (int i = 0; i < colors.shape()[0]; i++) {
Precision r, g, b;
zs.read(&r, sizeof(Precision));
zs.read(&g, sizeof(Precision));
zs.read(&b, sizeof(Precision));
color_acc(i, 0) = r;
color_acc(i, 1) = g;
color_acc(i, 2) = b;
}
}
MitsubaTriMesh load_serialized(const std::string &filename, int idx) {
std::fstream fs(filename.c_str(), std::fstream::in | std::fstream::binary);
// Format magic number, ignore it
fs.ignore(sizeof(short));
// Version number
short version = 0;
fs.read((char *)&version, sizeof(short));
if (idx > 0) {
skip_to_idx(fs, version, idx);
}
ZStream zs(fs);
uint32_t flags;
zs.read((char *)&flags, sizeof(uint32_t));
std::string name;
if (version == MTS_FILEFORMAT_VERSION_V4) {
char c;
while (true) {
zs.read((char *)&c, sizeof(char));
if (c == '\0')
break;
name.push_back(c);
}
}
size_t vertex_count = 0;
zs.read((char *)&vertex_count, sizeof(size_t));
size_t triangle_count = 0;
zs.read((char *)&triangle_count, sizeof(size_t));
bool file_double_precision = flags & EDoublePrecision;
// bool face_normals = flags & EFaceNormals;
auto vertices = py::array_t<float>({(int)vertex_count, 3});
auto normals = py::array_t<float>();
auto uvs = py::array_t<float>();
auto colors = py::array_t<float>();
if (file_double_precision) {
load_position<double>(zs, vertices);
} else {
load_position<float>(zs, vertices);
}
if (flags & EHasNormals) {
normals = py::array_t<float>({(int)vertex_count, 3});
if (file_double_precision) {
load_normal<double>(zs, normals);
} else {
load_normal<float>(zs, normals);
}
}
if (flags & EHasTexcoords) {
uvs = py::array_t<float>({(int)vertex_count, 2});
if (file_double_precision) {
load_uv<double>(zs, uvs);
} else {
load_uv<float>(zs, uvs);
}
}
if (flags & EHasColors) {
colors = py::array_t<float>({(int)vertex_count, 3});
if (file_double_precision) {
load_color<double>(zs, colors);
} else {
load_color<float>(zs, colors);
}
}
auto indices = py::array_t<int>({(int)triangle_count, 3});
auto indices_acc = indices.mutable_unchecked<2>();
for (int i = 0; i < (int)indices.shape()[0]; i++) {
int i0, i1, i2;
zs.read(&i0, sizeof(int));
zs.read(&i1, sizeof(int));
zs.read(&i2, sizeof(int));
indices_acc(i, 0) = i0;
indices_acc(i, 1) = i1;
indices_acc(i, 2) = i2;
}
return MitsubaTriMesh{vertices, indices, uvs, normals};
}