-
Notifications
You must be signed in to change notification settings - Fork 0
/
byol_pytorch.py
204 lines (157 loc) · 6.37 KB
/
byol_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import copy
import random
from functools import wraps
import torch
from torch import nn
import torch.nn.functional as F
from kornia import augmentation as augs
from kornia import filters, color
# helper functions
def default(val, def_val):
return def_val if val is None else val
def flatten(t):
return t.reshape(t.shape[0], -1)
def singleton(cache_key):
def inner_fn(fn):
@wraps(fn)
def wrapper(self, *args, **kwargs):
instance = getattr(self, cache_key)
if instance is not None:
return instance
instance = fn(self, *args, **kwargs)
setattr(self, cache_key, instance)
return instance
return wrapper
return inner_fn
# loss fn
def loss_fn(x, y):
x = F.normalize(x, dim=-1, p=2)
y = F.normalize(y, dim=-1, p=2)
return 2 - 2 * (x * y).sum(dim=-1)
# augmentation utils
class RandomApply(nn.Module):
def __init__(self, fn, p):
super().__init__()
self.fn = fn
self.p = p
def forward(self, x):
if random.random() > self.p:
return x
return self.fn(x)
# exponential moving average
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def update_moving_average(ema_updater, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = ema_updater.update_average(old_weight, up_weight)
# MLP class for projector and predictor
class MLP(nn.Module):
def __init__(self, dim, projection_size, hidden_size = 4096):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_size),
nn.BatchNorm1d(hidden_size),
nn.ReLU(inplace=True),
nn.Linear(hidden_size, projection_size)
)
def forward(self, x):
return self.net(x)
# a wrapper class for the base neural network
# will manage the interception of the hidden layer output
# and pipe it into the projecter and predictor nets
class NetWrapper(nn.Module):
def __init__(self, net, projection_size, projection_hidden_size, layer = -2):
super().__init__()
self.net = net
self.layer = layer
self.projector = None
self.projection_size = projection_size
self.projection_hidden_size = projection_hidden_size
self.hidden = None
self.hook_registered = False
def _find_layer(self):
if type(self.layer) == str:
modules = dict([*self.net.named_modules()])
return modules.get(self.layer, None)
elif type(self.layer) == int:
children = [*self.net.children()]
return children[self.layer]
return None
def _hook(self, _, __, output):
self.hidden = flatten(output)
def _register_hook(self):
layer = self._find_layer()
assert layer is not None, f'hidden layer ({self.layer}) not found'
handle = layer.register_forward_hook(self._hook)
self.hook_registered = True
@singleton('projector')
def _get_projector(self, hidden):
_, dim = hidden.shape
projector = MLP(dim, self.projection_size, self.projection_hidden_size)
return projector.to(hidden)
def get_representation(self, x):
if self.layer == -1:
return self.net(x)
if not self.hook_registered:
self._register_hook()
_ = self.net(x)
hidden = self.hidden
self.hidden = None
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
return hidden
def forward(self, x):
representation = self.get_representation(x)
projector = self._get_projector(representation)
projection = projector(representation)
return projection
# main class
class BYOL(nn.Module):
def __init__(self, net, image_size, hidden_layer = -2, projection_size = 256, projection_hidden_size = 4096, augment_fn = None, moving_average_decay = 0.99):
super().__init__()
# default SimCLR augmentation
DEFAULT_AUG = nn.Sequential(
RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
augs.RandomGrayscale(p=0.2),
augs.RandomHorizontalFlip(),
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
augs.RandomResizedCrop((image_size, image_size)),
color.Normalize(mean=torch.tensor([0.485, 0.456, 0.406]), std=torch.tensor([0.229, 0.224, 0.225]))
)
self.augment = default(augment_fn, DEFAULT_AUG)
self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer)
self.target_encoder = None
self.target_ema_updater = EMA(moving_average_decay)
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
# send a mock image tensor to instantiate singleton parameters
self.forward(torch.randn(2, 3, image_size, image_size))
@singleton('target_encoder')
def _get_target_encoder(self):
target_encoder = copy.deepcopy(self.online_encoder)
return target_encoder
def reset_moving_average(self):
del self.target_encoder
self.target_encoder = None
def update_moving_average(self):
assert self.target_encoder is not None, 'target encoder has not been created yet'
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
def forward(self, x):
image_one, image_two = self.augment(x), self.augment(x)
online_proj_one = self.online_encoder(image_one)
online_proj_two = self.online_encoder(image_two)
online_pred_one = self.online_predictor(online_proj_one)
online_pred_two = self.online_predictor(online_proj_two)
with torch.no_grad():
target_encoder = self._get_target_encoder()
target_proj_one = target_encoder(image_one)
target_proj_two = target_encoder(image_two)
loss_one = loss_fn(online_pred_one, target_proj_two.detach())
loss_two = loss_fn(online_pred_two, target_proj_one.detach())
loss = loss_one + loss_two
return loss.mean()