Skip to content

Latest commit

 

History

History
159 lines (109 loc) · 3.74 KB

DATASET.md

File metadata and controls

159 lines (109 loc) · 3.74 KB

Prepare datasets

We train AnyControl on MultiGen-20M and synthetic unaligned data. Please prepare training data following the instructions.

Prerequisites

  • (Optional) Install gsutil. Skip this step if you prefer to download MultiGen-20M on a browser.
mkdir tools && cd tools
curl -O https://dl.google.com/dl/cloudsdk/channels/rapid/downloads/google-cloud-cli-linux-x86_64.tar.gz
tar -xf google-cloud-cli-linux-x86_64.tar.gz
./google-cloud-sdk/install.sh
./google-cloud-sdk/bin/gcloud init
rm google-cloud-cli-linux-x86_64.tar.gz
cd ..
  • (Optional) Install awscli. Skip this step if you have already downloaded Open Images or prefer to download in other ways.
pip install awscli
  • Install PowerPaint and download PowerPaint-v1 model. Actually we have include PowerPaint code in data/PowerPaint with a commit id of e037c3f2ff62e3fc55072ef91a891c85f419a0cb. Please go to PowerPaint for the latest version. To download PowerPaint-v1 model, do
cd data

conda install git-lfs
git lfs install

git clone https://huggingface.co/JunhaoZhuang/PowerPaint-v1

cd ..

MultiGen-20M

Step 0. Download MultiGen-20M.

cd AnyControl

sh scripts/download_multigen.sh

The folder structure of AnyControl/datasets/MultiGen-20M should be

MultiGen-20M
├── conditions
│   ├── group_0_canny
│   ├── group_0_depth
│   ├── ...
├── images
│   ├── aesthetics_6_plus_0
│   ├── aesthetics_6_plus_1
│   ├── ...
├── json_files
│   ├── aesthetics_plus_all_group_canny_all.json
│   ├── aesthetics_plus_all_group_depth_all.json
│   ├── ...

Step 1. Generate .jsonl file.

python scripts/genereate_jsonl.py --dataset MultiGen-20M

COCO

Step 0. Download COCO dataset.

cd AnyControl

sh scripts/download_coco.sh

The folder structure of AnyControl/datasets/MSCOCO should be

MSCOCO
├── train2017
├── annotations
│   ├── instances_train2017.json
│   ├── captions_train2017.json
│   ├── ...

Step 1. Inpaiting with PowerPaint.

python scripts/prepare_unaligned_coco.py

Step 2. Extract multiple conditions.

python scripts/prepare_conditions --dataset COCO

Step 3. Generate .jsonl file.

python scripts/genereate_jsonl.py --dataset COCO

Open Images

Step 0. Download Open Images dataset.

cd AnyControl

sh scripts/download_openimages.sh

The folder structure of AnyControl/datasets/OpenImages should be

OpenImages
├── train
├── train-annotations-object-segmentation.csv
├── oidv7-class-descriptions-boxable.csv
├── ...

Step 1. Generate captions for Open Images data with blip2.

pip install salesforce-lavis

python scripts/prepare_openimages_captions.py

Step 2. Inpainting with PowerPaint.

python scripts/prepare_unaligned_openimages.py

Step 3. Extract multiple conditions.

python scripts/prepare_conditions --dataset OpenImages

Step 4. Generate .jsonl file.

python scripts/genereate_jsonl.py --dataset OpenImages