Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dev 1.x #2908

Merged
merged 31 commits into from
Jan 4, 2024
Merged

Dev 1.x #2908

Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
931870f
[Fix] Fix some typo and compatible with new config (#2754)
Tau-J Oct 13, 2023
8c0f66a
[Fix] Let RTMPose onnxruntime example support 17 keypoints model (#2756)
RFYoung Oct 16, 2023
d2b855e
[CodeCamp2023-313]ExLPose data set support (#2778)
Yang-Changhui Oct 26, 2023
845591b
[Enhance] generate bbox file with mmdet (#2767)
Ben-Louis Oct 27, 2023
39896a6
[Fix] Remove inferencer bar (#2782)
Ben-Louis Nov 8, 2023
4a71dbc
[Fix] convert rtmw configs to old version (#2797)
Ben-Louis Nov 8, 2023
529765e
[Fix] Fix incorrect keepdims in vis_accuracy of vis_head (#2804)
yao5401 Nov 13, 2023
2877876
[Doc] Update inference.md (#2802)
icynic Nov 14, 2023
0d387e7
[Fix] Fix to local_visualizer_3d data dumping (#2821)
Jendker Nov 29, 2023
d7f04bb
[Feature] Support RTMO (#2861)
Ben-Louis Dec 13, 2023
0c848fc
[Fix] fix bug in crowdpose configs (#2862)
Ben-Louis Dec 13, 2023
5570864
[Feature] Add demo for Pose Anything in projects (#2863)
orhir Dec 14, 2023
59ed105
[Fix] fix a bug in RTMOModeSwitchHook (#2866)
Ben-Louis Dec 15, 2023
41c26ef
[Docs] add pose anything to projects readme (#2865)
Ben-Louis Dec 15, 2023
05ed0a0
[Doc] Polish RTMO homepage (#2870)
Ben-Louis Dec 16, 2023
ce53f1c
[Feature] Update RTMW models (#2849)
Tau-J Dec 18, 2023
8a81fe2
[Doc] Add PoseAnything to README file (#2871)
orhir Dec 19, 2023
eeb5095
[Feature] support RTMPose Gradio app in projects (#2877)
Ben-Louis Dec 20, 2023
c679197
[Feature] Add RTMO-tiny and RTMO-l crowdpose model trained with body7…
Ben-Louis Dec 20, 2023
d9f5baa
[Doc] add instruction on the keypoint definition (#2876)
Ben-Louis Dec 20, 2023
b6a707b
[Fix] replace torch.norm with torch.linalg.norm during onnx exportati…
Ben-Louis Dec 20, 2023
dcf5d3e
[Fix] fix RTMPose app (#2880)
Ben-Louis Dec 20, 2023
a388827
[Doc] Add RTMW yaml file (#2881)
Ben-Louis Dec 21, 2023
8c4a6e0
[Docs] Refine the C++ API usage example in the RTMPose documentation …
willyfh Dec 25, 2023
fdab6f7
[Feature] Support H3WB dataset (#2736)
xiexinch Dec 26, 2023
46ba2da
[Enhance] Add inference options for RTMO (#2889)
Ben-Louis Dec 26, 2023
e2c1a1c
[Fix] Typo fix in example comment of pose_data_sample.py (#2897)
jit-a3 Dec 28, 2023
575f65a
[Docs] update readme (#2902)
Ben-Louis Jan 3, 2024
df0a374
[Fix] add RTMO to README and fix some bugs with Inferencer (#2900)
Ben-Louis Jan 3, 2024
6f7411c
[Fix] Modify the dtype of heatmap_weights to speed up the calculation…
Ginray Jan 3, 2024
c9ca86a
Bump v1.3.0 (#2907)
Ben-Louis Jan 4, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CITATION.cff
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
cff-version: 1.2.0
cff-version: 1.3.0
message: "If you use this software, please cite it as below."
authors:
- name: "MMPose Contributors"
Expand Down
32 changes: 15 additions & 17 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -98,21 +98,18 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-

## What's New

- We have added support for two new datasets:
- Release [RTMO](/projects/rtmo), a state-of-the-art real-time method for multi-person pose estimation.

- (CVPR 2023) [UBody](https://mmpose.readthedocs.io/zh_CN/latest/model_zoo_papers/datasets.html#ubody-cvpr-2023)
- [300W-LP](https://github.com/open-mmlab/mmpose/tree/main/configs/face_2d_keypoint/topdown_heatmap/300wlp)
![rtmo](https://github.com/open-mmlab/mmpose/assets/26127467/54d5555a-23e5-4308-89d1-f0c82a6734c2)

- Support for four new algorithms:
- Release [RTMW](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw_cocktail14.md) models in various sizes ranging from RTMW-m to RTMW-x. The input sizes include `256x192` and `384x288`. This provides flexibility to select the right model for different speed and accuracy requirements.

- (ICCV 2023) [MotionBERT](https://github.com/open-mmlab/mmpose/tree/main/configs/body_3d_keypoint/motionbert)
- (ICCVW 2023) [DWPose](https://github.com/open-mmlab/mmpose/tree/main/configs/wholebody_2d_keypoint/dwpose)
- (ICLR 2023) [EDPose](https://mmpose.readthedocs.io/zh_CN/latest/model_zoo/body_2d_keypoint.html#edpose-edpose-on-coco)
- (ICLR 2022) [Uniformer](https://github.com/open-mmlab/mmpose/tree/main/projects/uniformer)
- Support inference of [PoseAnything](/projects/pose_anything). Web demo is available [here](https://openxlab.org.cn/apps/detail/orhir/Pose-Anything).

- Released the first whole-body pose estimation model, RTMW, with accuracy exceeding 70 AP on COCO-Wholebody. For details, refer to [RTMPose](/projects/rtmpose/). [Try it now!](https://openxlab.org.cn/apps/detail/mmpose/RTMPose)
- Support for two new datasets:

![rtmw](https://github.com/open-mmlab/mmpose/assets/13503330/635c4618-c459-45e8-84a5-eb68cf338d00)
- (CVPR 2023) [ExLPose](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#exlpose-dataset)
- (ICCV 2023) [H3WB](/docs/en/dataset_zoo/3d_wholebody_keypoint.md)

- Welcome to use the [*MMPose project*](/projects/README.md). Here, you can discover the latest features and algorithms in MMPose and quickly share your ideas and code implementations with the community. Adding new features to MMPose has become smoother:

Expand All @@ -121,6 +118,8 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-
- Utilize the powerful capabilities of MMPose in the form of independent projects without being constrained by the code framework.
- Newly added projects include:
- [RTMPose](/projects/rtmpose/)
- [RTMO](/projects/rtmo/)
- [PoseAnything](/projects/pose_anything/)
- [YOLOX-Pose](/projects/yolox_pose/)
- [MMPose4AIGC](/projects/mmpose4aigc/)
- [Simple Keypoints](/projects/skps/)
Expand All @@ -130,15 +129,14 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-

<br/>

- October 12, 2023: MMPose [v1.2.0](https://github.com/open-mmlab/mmpose/releases/tag/v1.2.0) has been officially released, with major updates including:
- January 4, 2024: MMPose [v1.3.0](https://github.com/open-mmlab/mmpose/releases/tag/v1.3.0) has been officially released, with major updates including:

- Support for new datasets: UBody, 300W-LP.
- Support for new algorithms: MotionBERT, DWPose, EDPose, Uniformer.
- Migration of Associate Embedding, InterNet, YOLOX-Pose algorithms.
- Migration of the DeepFashion2 dataset.
- Support for Badcase visualization analysis, multi-dataset evaluation, and keypoint visibility prediction features.
- Support for new datasets: ExLPose, H3WB
- Release of new RTMPose series models: RTMO, RTMW
- Support for new algorithm PoseAnything
- Enhanced Inferencer with optional progress bar and improved affinity for one-stage methods

Please check the complete [release notes](https://github.com/open-mmlab/mmpose/releases/tag/v1.2.0) for more details on the updates brought by MMPose v1.2.0!
Please check the complete [release notes](https://github.com/open-mmlab/mmpose/releases/tag/v1.3.0) for more details on the updates brought by MMPose v1.3.0!

## 0.x / 1.x Migration

Expand Down
32 changes: 15 additions & 17 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -96,21 +96,18 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-

## 最新进展

- 我们支持了两个新的数据集:
- 发布了单阶段实时多人姿态估计模型 [RTMO](/projects/rtmo)。相比 RTMPose 在多人场景下性能更优

- (CVPR 2023) [UBody](https://mmpose.readthedocs.io/zh_CN/latest/model_zoo_papers/datasets.html#ubody-cvpr-2023)
- [300W-LP](https://github.com/open-mmlab/mmpose/tree/main/configs/face_2d_keypoint/topdown_heatmap/300wlp)
![rtmo](https://github.com/open-mmlab/mmpose/assets/26127467/54d5555a-23e5-4308-89d1-f0c82a6734c2)

- 支持四个新算法:
- 发布了不同尺寸的 [RTMW](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw_cocktail14.md) 模型,满足不同的使用场景。模型尺寸覆盖从 RTMW-m 到 RTMW-x 的模型,输入图像尺寸包含 256x192 和 384x288

- (ICCV 2023) [MotionBERT](https://github.com/open-mmlab/mmpose/tree/main/configs/body_3d_keypoint/motionbert)
- (ICCVW 2023) [DWPose](https://github.com/open-mmlab/mmpose/tree/main/configs/wholebody_2d_keypoint/dwpose)
- (ICLR 2023) [EDPose](https://mmpose.readthedocs.io/zh_CN/latest/model_zoo/body_2d_keypoint.html#edpose-edpose-on-coco)
- (ICLR 2022) [Uniformer](https://github.com/open-mmlab/mmpose/tree/main/projects/uniformer)
- 支持了 [PoseAnything](/projects/pose_anything) 的推理。[在线试玩](https://openxlab.org.cn/apps/detail/orhir/Pose-Anything)

- 发布首个在 COCO-Wholebody 上精度超过 70 AP 的全身姿态估计模型 RTMW,具体请参考 [RTMPose](/projects/rtmpose/)。[在线试玩](https://openxlab.org.cn/apps/detail/mmpose/RTMPose)
- 我们支持了两个新的数据集:

![rtmw](https://github.com/open-mmlab/mmpose/assets/13503330/635c4618-c459-45e8-84a5-eb68cf338d00)
- (CVPR 2023) [ExLPose](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#exlpose-dataset)
- (ICCV 2023) [H3WB](/docs/en/dataset_zoo/3d_wholebody_keypoint.md)

- 欢迎使用 [*MMPose 项目*](/projects/README.md)。在这里,您可以发现 MMPose 中的最新功能和算法,并且可以通过最快的方式与社区分享自己的创意和代码实现。向 MMPose 中添加新功能从此变得简单丝滑:

Expand All @@ -119,6 +116,8 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-
- 通过独立项目的形式,利用 MMPose 的强大功能,同时不被代码框架所束缚
- 最新添加的项目包括:
- [RTMPose](/projects/rtmpose/)
- [RTMO](/projects/rtmo/)
- [PoseAnything](/projects/pose_anything/)
- [YOLOX-Pose](/projects/yolox_pose/)
- [MMPose4AIGC](/projects/mmpose4aigc/)
- [Simple Keypoints](/projects/skps/)
Expand All @@ -128,15 +127,14 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-

<br/>

- 2023-10-12:MMPose [v1.2.0](https://github.com/open-mmlab/mmpose/releases/tag/v1.2.0) 正式发布了,主要更新包括:
- 2024-01-04:MMPose [v1.3.0](https://github.com/open-mmlab/mmpose/releases/tag/v1.3.0) 正式发布了,主要更新包括:

- 支持新数据集:UBody、300W-LP。
- 支持新算法:MotionBERT、DWPose、EDPose、Uniformer
- 迁移 Associate Embedding、InterNet、YOLOX-Pose 算法。
- 迁移 DeepFashion2 数据集。
- 支持 Badcase 可视化分析、多数据集评测、关键点可见性预测功能。
- 支持新数据集:ExLPose、H3WB
- 发布 RTMPose 系列新模型:RTMO、RTMW
- 支持新算法 PoseAnything
- 推理器 Inferencer 支持可选的进度条、提升与单阶段模型的适配性

请查看完整的 [版本说明](https://github.com/open-mmlab/mmpose/releases/tag/v1.2.0) 以了解更多 MMPose v1.2.0 带来的更新!
请查看完整的 [版本说明](https://github.com/open-mmlab/mmpose/releases/tag/v1.3.0) 以了解更多 MMPose v1.3.0 带来的更新!

## 0.x / 1.x 迁移

Expand Down
125 changes: 125 additions & 0 deletions configs/_base_/datasets/exlpose.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
dataset_info = dict(
dataset_name='exlpose',
paper_info=dict(
author='Sohyun Lee, Jaesung Rim, Boseung Jeong, Geonu Kim,'
'ByungJu Woo, Haechan Lee, Sunghyun Cho, Suha Kwak',
title='Human Pose Estimation in Extremely Low-Light Conditions',
container='arXiv',
year='2023',
homepage='https://arxiv.org/abs/2303.15410',
),
keypoint_info={
0:
dict(
name='left_shoulder',
id=0,
color=[0, 255, 0],
type='upper',
swap='right_shoulder'),
1:
dict(
name='right_shoulder',
id=1,
color=[255, 128, 0],
type='upper',
swap='left_shoulder'),
2:
dict(
name='left_elbow',
id=2,
color=[0, 255, 0],
type='upper',
swap='right_elbow'),
3:
dict(
name='right_elbow',
id=3,
color=[255, 128, 0],
type='upper',
swap='left_elbow'),
4:
dict(
name='left_wrist',
id=4,
color=[0, 255, 0],
type='upper',
swap='right_wrist'),
5:
dict(
name='right_wrist',
id=5,
color=[255, 128, 0],
type='upper',
swap='left_wrist'),
6:
dict(
name='left_hip',
id=6,
color=[0, 255, 0],
type='lower',
swap='right_hip'),
7:
dict(
name='right_hip',
id=7,
color=[255, 128, 0],
type='lower',
swap='left_hip'),
8:
dict(
name='left_knee',
id=8,
color=[0, 255, 0],
type='lower',
swap='right_knee'),
9:
dict(
name='right_knee',
id=9,
color=[255, 128, 0],
type='lower',
swap='left_knee'),
10:
dict(
name='left_ankle',
id=10,
color=[0, 255, 0],
type='lower',
swap='right_ankle'),
11:
dict(
name='right_ankle',
id=11,
color=[255, 128, 0],
type='lower',
swap='left_ankle'),
12:
dict(name='head', id=12, color=[51, 153, 255], type='upper', swap=''),
13:
dict(name='neck', id=13, color=[51, 153, 255], type='upper', swap='')
},
skeleton_info={
0: dict(link=('head', 'neck'), id=0, color=[51, 153, 255]),
1: dict(link=('neck', 'left_shoulder'), id=1, color=[51, 153, 255]),
2: dict(link=('neck', 'right_shoulder'), id=2, color=[51, 153, 255]),
3: dict(link=('left_shoulder', 'left_elbow'), id=3, color=[0, 255, 0]),
4: dict(link=('left_elbow', 'left_wrist'), id=4, color=[0, 255, 0]),
5: dict(
link=('right_shoulder', 'right_elbow'), id=5, color=[255, 128, 0]),
6:
dict(link=('right_elbow', 'right_wrist'), id=6, color=[255, 128, 0]),
7: dict(link=('neck', 'right_hip'), id=7, color=[51, 153, 255]),
8: dict(link=('neck', 'left_hip'), id=8, color=[51, 153, 255]),
9: dict(link=('right_hip', 'right_knee'), id=9, color=[255, 128, 0]),
10:
dict(link=('right_knee', 'right_ankle'), id=10, color=[255, 128, 0]),
11: dict(link=('left_hip', 'left_knee'), id=11, color=[0, 255, 0]),
12: dict(link=('left_knee', 'left_ankle'), id=12, color=[0, 255, 0]),
},
joint_weights=[
0.2, 0.2, 0.2, 1.3, 1.5, 0.2, 1.3, 1.5, 0.2, 0.2, 0.5, 0.2, 0.2, 0.5
],
sigmas=[
0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087,
0.089, 0.089, 0.079, 0.079
])
Loading
Loading