-
Notifications
You must be signed in to change notification settings - Fork 88
/
data.py
163 lines (139 loc) · 5.62 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import pickle
import os
import torch
from torch.utils.data import TensorDataset
from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
from sklearn.model_selection import train_test_split
def set_up_data(H):
shift_loss = -127.5
scale_loss = 1. / 127.5
if H.dataset == 'imagenet32':
trX, vaX, teX = imagenet32(H.data_root)
H.image_size = 32
H.image_channels = 3
shift = -116.2373
scale = 1. / 69.37404
elif H.dataset == 'imagenet64':
trX, vaX, teX = imagenet64(H.data_root)
H.image_size = 64
H.image_channels = 3
shift = -115.92961967
scale = 1. / 69.37404
elif H.dataset == 'ffhq_256':
trX, vaX, teX = ffhq256(H.data_root)
H.image_size = 256
H.image_channels = 3
shift = -112.8666757481
scale = 1. / 69.84780273
elif H.dataset == 'ffhq_1024':
trX, vaX, teX = ffhq1024(H.data_root)
H.image_size = 1024
H.image_channels = 3
shift = -0.4387
scale = 1.0 / 0.2743
shift_loss = -0.5
scale_loss = 2.0
elif H.dataset == 'cifar10':
(trX, _), (vaX, _), (teX, _) = cifar10(H.data_root, one_hot=False)
H.image_size = 32
H.image_channels = 3
shift = -120.63838
scale = 1. / 64.16736
else:
raise ValueError('unknown dataset: ', H.dataset)
do_low_bit = H.dataset in ['ffhq_256']
if H.test_eval:
print('DOING TEST')
eval_dataset = teX
else:
eval_dataset = vaX
shift = torch.tensor([shift]).cuda().view(1, 1, 1, 1)
scale = torch.tensor([scale]).cuda().view(1, 1, 1, 1)
shift_loss = torch.tensor([shift_loss]).cuda().view(1, 1, 1, 1)
scale_loss = torch.tensor([scale_loss]).cuda().view(1, 1, 1, 1)
if H.dataset == 'ffhq_1024':
train_data = ImageFolder(trX, transforms.ToTensor())
valid_data = ImageFolder(eval_dataset, transforms.ToTensor())
untranspose = True
else:
train_data = TensorDataset(torch.as_tensor(trX))
valid_data = TensorDataset(torch.as_tensor(eval_dataset))
untranspose = False
def preprocess_func(x):
nonlocal shift
nonlocal scale
nonlocal shift_loss
nonlocal scale_loss
nonlocal do_low_bit
nonlocal untranspose
'takes in a data example and returns the preprocessed input'
'as well as the input processed for the loss'
if untranspose:
x[0] = x[0].permute(0, 2, 3, 1)
inp = x[0].cuda(non_blocking=True).float()
out = inp.clone()
inp.add_(shift).mul_(scale)
if do_low_bit:
# 5 bits of precision
out.mul_(1. / 8.).floor_().mul_(8.)
out.add_(shift_loss).mul_(scale_loss)
return inp, out
return H, train_data, valid_data, preprocess_func
def mkdir_p(path):
os.makedirs(path, exist_ok=True)
def flatten(outer):
return [el for inner in outer for el in inner]
def unpickle_cifar10(file):
fo = open(file, 'rb')
data = pickle.load(fo, encoding='bytes')
fo.close()
data = dict(zip([k.decode() for k in data.keys()], data.values()))
return data
def imagenet32(data_root):
trX = np.load(os.path.join(data_root, 'imagenet32-train.npy'), mmap_mode='r')
np.random.seed(42)
tr_va_split_indices = np.random.permutation(trX.shape[0])
train = trX[tr_va_split_indices[:-5000]]
valid = trX[tr_va_split_indices[-5000:]]
test = np.load(os.path.join(data_root, 'imagenet32-valid.npy'), mmap_mode='r')
return train, valid, test
def imagenet64(data_root):
trX = np.load(os.path.join(data_root, 'imagenet64-train.npy'), mmap_mode='r')
np.random.seed(42)
tr_va_split_indices = np.random.permutation(trX.shape[0])
train = trX[tr_va_split_indices[:-5000]]
valid = trX[tr_va_split_indices[-5000:]]
test = np.load(os.path.join(data_root, 'imagenet64-valid.npy'), mmap_mode='r') # this is test.
return train, valid, test
def ffhq1024(data_root):
# we did not significantly tune hyperparameters on ffhq-1024, and so simply evaluate on the test set
return os.path.join(data_root, 'ffhq1024/train'), os.path.join(data_root, 'ffhq1024/valid'), os.path.join(data_root, 'ffhq1024/valid')
def ffhq256(data_root):
trX = np.load(os.path.join(data_root, 'ffhq-256.npy'), mmap_mode='r')
np.random.seed(5)
tr_va_split_indices = np.random.permutation(trX.shape[0])
train = trX[tr_va_split_indices[:-7000]]
valid = trX[tr_va_split_indices[-7000:]]
# we did not significantly tune hyperparameters on ffhq-256, and so simply evaluate on the test set
return train, valid, valid
def cifar10(data_root, one_hot=True):
tr_data = [unpickle_cifar10(os.path.join(data_root, 'cifar-10-batches-py/', 'data_batch_%d' % i)) for i in range(1, 6)]
trX = np.vstack(data['data'] for data in tr_data)
trY = np.asarray(flatten([data['labels'] for data in tr_data]))
te_data = unpickle_cifar10(os.path.join(data_root, 'cifar-10-batches-py/', 'test_batch'))
teX = np.asarray(te_data['data'])
teY = np.asarray(te_data['labels'])
trX = trX.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
teX = teX.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
trX, vaX, trY, vaY = train_test_split(trX, trY, test_size=5000, random_state=11172018)
if one_hot:
trY = np.eye(10, dtype=np.float32)[trY]
vaY = np.eye(10, dtype=np.float32)[vaY]
teY = np.eye(10, dtype=np.float32)[teY]
else:
trY = np.reshape(trY, [-1, 1])
vaY = np.reshape(vaY, [-1, 1])
teY = np.reshape(teY, [-1, 1])
return (trX, trY), (vaX, vaY), (teX, teY)