-
Notifications
You must be signed in to change notification settings - Fork 88
/
train.py
136 lines (112 loc) · 6.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import imageio
import os
import time
import torch
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from data import set_up_data
from utils import get_cpu_stats_over_ranks
from train_helpers import set_up_hyperparams, load_vaes, load_opt, accumulate_stats, save_model, update_ema
def training_step(H, data_input, target, vae, ema_vae, optimizer, iterate):
t0 = time.time()
vae.zero_grad()
stats = vae.forward(data_input, target)
stats['elbo'].backward()
grad_norm = torch.nn.utils.clip_grad_norm_(vae.parameters(), H.grad_clip).item()
distortion_nans = torch.isnan(stats['distortion']).sum()
rate_nans = torch.isnan(stats['rate']).sum()
stats.update(dict(rate_nans=0 if rate_nans == 0 else 1, distortion_nans=0 if distortion_nans == 0 else 1))
stats = get_cpu_stats_over_ranks(stats)
skipped_updates = 1
# only update if no rank has a nan and if the grad norm is below a specific threshold
if stats['distortion_nans'] == 0 and stats['rate_nans'] == 0 and (H.skip_threshold == -1 or grad_norm < H.skip_threshold):
optimizer.step()
skipped_updates = 0
update_ema(vae, ema_vae, H.ema_rate)
t1 = time.time()
stats.update(skipped_updates=skipped_updates, iter_time=t1 - t0, grad_norm=grad_norm)
return stats
def eval_step(data_input, target, ema_vae):
with torch.no_grad():
stats = ema_vae.forward(data_input, target)
stats = get_cpu_stats_over_ranks(stats)
return stats
def get_sample_for_visualization(data, preprocess_fn, num, dataset):
for x in DataLoader(data, batch_size=num):
break
orig_image = (x[0] * 255.0).to(torch.uint8).permute(0, 2, 3, 1) if dataset == 'ffhq_1024' else x[0]
preprocessed = preprocess_fn(x)[0]
return orig_image, preprocessed
def train_loop(H, data_train, data_valid, preprocess_fn, vae, ema_vae, logprint):
optimizer, scheduler, cur_eval_loss, iterate, starting_epoch = load_opt(H, vae, logprint)
train_sampler = DistributedSampler(data_train, num_replicas=H.mpi_size, rank=H.rank)
viz_batch_original, viz_batch_processed = get_sample_for_visualization(data_valid, preprocess_fn, H.num_images_visualize, H.dataset)
early_evals = set([1] + [2 ** exp for exp in range(3, 14)])
stats = []
iters_since_starting = 0
H.ema_rate = torch.as_tensor(H.ema_rate).cuda()
for epoch in range(starting_epoch, H.num_epochs):
train_sampler.set_epoch(epoch)
for x in DataLoader(data_train, batch_size=H.n_batch, drop_last=True, pin_memory=True, sampler=train_sampler):
data_input, target = preprocess_fn(x)
training_stats = training_step(H, data_input, target, vae, ema_vae, optimizer, iterate)
stats.append(training_stats)
scheduler.step()
if iterate % H.iters_per_print == 0 or iters_since_starting in early_evals:
logprint(model=H.desc, type='train_loss', lr=scheduler.get_last_lr()[0], epoch=epoch, step=iterate, **accumulate_stats(stats, H.iters_per_print))
if iterate % H.iters_per_images == 0 or (iters_since_starting in early_evals and H.dataset != 'ffhq_1024') and H.rank == 0:
write_images(H, ema_vae, viz_batch_original, viz_batch_processed, f'{H.save_dir}/samples-{iterate}.png', logprint)
iterate += 1
iters_since_starting += 1
if iterate % H.iters_per_save == 0 and H.rank == 0:
if np.isfinite(stats[-1]['elbo']):
logprint(model=H.desc, type='train_loss', epoch=epoch, step=iterate, **accumulate_stats(stats, H.iters_per_print))
fp = os.path.join(H.save_dir, 'latest')
logprint(f'Saving model@ {iterate} to {fp}')
save_model(fp, vae, ema_vae, optimizer, H)
if iterate % H.iters_per_ckpt == 0 and H.rank == 0:
save_model(os.path.join(H.save_dir, f'iter-{iterate}'), vae, ema_vae, optimizer, H)
if epoch % H.epochs_per_eval == 0:
valid_stats = evaluate(H, ema_vae, data_valid, preprocess_fn)
logprint(model=H.desc, type='eval_loss', epoch=epoch, step=iterate, **valid_stats)
def evaluate(H, ema_vae, data_valid, preprocess_fn):
stats_valid = []
valid_sampler = DistributedSampler(data_valid, num_replicas=H.mpi_size, rank=H.rank)
for x in DataLoader(data_valid, batch_size=H.n_batch, drop_last=True, pin_memory=True, sampler=valid_sampler):
data_input, target = preprocess_fn(x)
stats_valid.append(eval_step(data_input, target, ema_vae))
vals = [a['elbo'] for a in stats_valid]
finites = np.array(vals)[np.isfinite(vals)]
stats = dict(n_batches=len(vals), filtered_elbo=np.mean(finites), **{k: np.mean([a[k] for a in stats_valid]) for k in stats_valid[-1]})
return stats
def write_images(H, ema_vae, viz_batch_original, viz_batch_processed, fname, logprint):
zs = [s['z'].cuda() for s in ema_vae.forward_get_latents(viz_batch_processed)]
batches = [viz_batch_original.numpy()]
mb = viz_batch_processed.shape[0]
lv_points = np.floor(np.linspace(0, 1, H.num_variables_visualize + 2) * len(zs)).astype(int)[1:-1]
for i in lv_points:
batches.append(ema_vae.forward_samples_set_latents(mb, zs[:i], t=0.1))
for t in [1.0, 0.9, 0.8, 0.7][:H.num_temperatures_visualize]:
batches.append(ema_vae.forward_uncond_samples(mb, t=t))
n_rows = len(batches)
im = np.concatenate(batches, axis=0).reshape((n_rows, mb, *viz_batch_processed.shape[1:])).transpose([0, 2, 1, 3, 4]).reshape([n_rows * viz_batch_processed.shape[1], mb * viz_batch_processed.shape[2], 3])
logprint(f'printing samples to {fname}')
imageio.imwrite(fname, im)
def run_test_eval(H, ema_vae, data_test, preprocess_fn, logprint):
print('evaluating')
stats = evaluate(H, ema_vae, data_test, preprocess_fn)
print('test results')
for k in stats:
print(k, stats[k])
logprint(type='test_loss', **stats)
def main():
H, logprint = set_up_hyperparams()
H, data_train, data_valid_or_test, preprocess_fn = set_up_data(H)
vae, ema_vae = load_vaes(H, logprint)
if H.test_eval:
run_test_eval(H, ema_vae, data_valid_or_test, preprocess_fn, logprint)
else:
train_loop(H, data_train, data_valid_or_test, preprocess_fn, vae, ema_vae, logprint)
if __name__ == "__main__":
main()