-
Notifications
You must be signed in to change notification settings - Fork 88
/
vae.py
252 lines (221 loc) · 9.54 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
from torch import nn
from torch.nn import functional as F
from vae_helpers import HModule, get_1x1, get_3x3, DmolNet, draw_gaussian_diag_samples, gaussian_analytical_kl
from collections import defaultdict
import numpy as np
import itertools
class Block(nn.Module):
def __init__(self, in_width, middle_width, out_width, down_rate=None, residual=False, use_3x3=True, zero_last=False):
super().__init__()
self.down_rate = down_rate
self.residual = residual
self.c1 = get_1x1(in_width, middle_width)
self.c2 = get_3x3(middle_width, middle_width) if use_3x3 else get_1x1(middle_width, middle_width)
self.c3 = get_3x3(middle_width, middle_width) if use_3x3 else get_1x1(middle_width, middle_width)
self.c4 = get_1x1(middle_width, out_width, zero_weights=zero_last)
def forward(self, x):
xhat = self.c1(F.gelu(x))
xhat = self.c2(F.gelu(xhat))
xhat = self.c3(F.gelu(xhat))
xhat = self.c4(F.gelu(xhat))
out = x + xhat if self.residual else xhat
if self.down_rate is not None:
out = F.avg_pool2d(out, kernel_size=self.down_rate, stride=self.down_rate)
return out
def parse_layer_string(s):
layers = []
for ss in s.split(','):
if 'x' in ss:
res, num = ss.split('x')
count = int(num)
layers += [(int(res), None) for _ in range(count)]
elif 'm' in ss:
res, mixin = [int(a) for a in ss.split('m')]
layers.append((res, mixin))
elif 'd' in ss:
res, down_rate = [int(a) for a in ss.split('d')]
layers.append((res, down_rate))
else:
res = int(ss)
layers.append((res, None))
return layers
def pad_channels(t, width):
d1, d2, d3, d4 = t.shape
empty = torch.zeros(d1, width, d3, d4, device=t.device)
empty[:, :d2, :, :] = t
return empty
def get_width_settings(width, s):
mapping = defaultdict(lambda: width)
if s:
s = s.split(',')
for ss in s:
k, v = ss.split(':')
mapping[int(k)] = int(v)
return mapping
class Encoder(HModule):
def build(self):
H = self.H
self.in_conv = get_3x3(H.image_channels, H.width)
self.widths = get_width_settings(H.width, H.custom_width_str)
enc_blocks = []
blockstr = parse_layer_string(H.enc_blocks)
for res, down_rate in blockstr:
use_3x3 = res > 2 # Don't use 3x3s for 1x1, 2x2 patches
enc_blocks.append(Block(self.widths[res], int(self.widths[res] * H.bottleneck_multiple), self.widths[res], down_rate=down_rate, residual=True, use_3x3=use_3x3))
n_blocks = len(blockstr)
for b in enc_blocks:
b.c4.weight.data *= np.sqrt(1 / n_blocks)
self.enc_blocks = nn.ModuleList(enc_blocks)
def forward(self, x):
x = x.permute(0, 3, 1, 2).contiguous()
x = self.in_conv(x)
activations = {}
activations[x.shape[2]] = x
for block in self.enc_blocks:
x = block(x)
res = x.shape[2]
x = x if x.shape[1] == self.widths[res] else pad_channels(x, self.widths[res])
activations[res] = x
return activations
class DecBlock(nn.Module):
def __init__(self, H, res, mixin, n_blocks):
super().__init__()
self.base = res
self.mixin = mixin
self.H = H
self.widths = get_width_settings(H.width, H.custom_width_str)
width = self.widths[res]
use_3x3 = res > 2
cond_width = int(width * H.bottleneck_multiple)
self.zdim = H.zdim
self.enc = Block(width * 2, cond_width, H.zdim * 2, residual=False, use_3x3=use_3x3)
self.prior = Block(width, cond_width, H.zdim * 2 + width, residual=False, use_3x3=use_3x3, zero_last=True)
self.z_proj = get_1x1(H.zdim, width)
self.z_proj.weight.data *= np.sqrt(1 / n_blocks)
self.resnet = Block(width, cond_width, width, residual=True, use_3x3=use_3x3)
self.resnet.c4.weight.data *= np.sqrt(1 / n_blocks)
self.z_fn = lambda x: self.z_proj(x)
def sample(self, x, acts):
qm, qv = self.enc(torch.cat([x, acts], dim=1)).chunk(2, dim=1)
feats = self.prior(x)
pm, pv, xpp = feats[:, :self.zdim, ...], feats[:, self.zdim:self.zdim * 2, ...], feats[:, self.zdim * 2:, ...]
x = x + xpp
z = draw_gaussian_diag_samples(qm, qv)
kl = gaussian_analytical_kl(qm, pm, qv, pv)
return z, x, kl
def sample_uncond(self, x, t=None, lvs=None):
n, c, h, w = x.shape
feats = self.prior(x)
pm, pv, xpp = feats[:, :self.zdim, ...], feats[:, self.zdim:self.zdim * 2, ...], feats[:, self.zdim * 2:, ...]
x = x + xpp
if lvs is not None:
z = lvs
else:
if t is not None:
pv = pv + torch.ones_like(pv) * np.log(t)
z = draw_gaussian_diag_samples(pm, pv)
return z, x
def get_inputs(self, xs, activations):
acts = activations[self.base]
try:
x = xs[self.base]
except KeyError:
x = torch.zeros_like(acts)
if acts.shape[0] != x.shape[0]:
x = x.repeat(acts.shape[0], 1, 1, 1)
return x, acts
def forward(self, xs, activations, get_latents=False):
x, acts = self.get_inputs(xs, activations)
if self.mixin is not None:
x = x + F.interpolate(xs[self.mixin][:, :x.shape[1], ...], scale_factor=self.base // self.mixin)
z, x, kl = self.sample(x, acts)
x = x + self.z_fn(z)
x = self.resnet(x)
xs[self.base] = x
if get_latents:
return xs, dict(z=z.detach(), kl=kl)
return xs, dict(kl=kl)
def forward_uncond(self, xs, t=None, lvs=None):
try:
x = xs[self.base]
except KeyError:
ref = xs[list(xs.keys())[0]]
x = torch.zeros(dtype=ref.dtype, size=(ref.shape[0], self.widths[self.base], self.base, self.base), device=ref.device)
if self.mixin is not None:
x = x + F.interpolate(xs[self.mixin][:, :x.shape[1], ...], scale_factor=self.base // self.mixin)
z, x = self.sample_uncond(x, t, lvs=lvs)
x = x + self.z_fn(z)
x = self.resnet(x)
xs[self.base] = x
return xs
class Decoder(HModule):
def build(self):
H = self.H
resos = set()
dec_blocks = []
self.widths = get_width_settings(H.width, H.custom_width_str)
blocks = parse_layer_string(H.dec_blocks)
for idx, (res, mixin) in enumerate(blocks):
dec_blocks.append(DecBlock(H, res, mixin, n_blocks=len(blocks)))
resos.add(res)
self.resolutions = sorted(resos)
self.dec_blocks = nn.ModuleList(dec_blocks)
self.bias_xs = nn.ParameterList([nn.Parameter(torch.zeros(1, self.widths[res], res, res)) for res in self.resolutions if res <= H.no_bias_above])
self.out_net = DmolNet(H)
self.gain = nn.Parameter(torch.ones(1, H.width, 1, 1))
self.bias = nn.Parameter(torch.zeros(1, H.width, 1, 1))
self.final_fn = lambda x: x * self.gain + self.bias
def forward(self, activations, get_latents=False):
stats = []
xs = {a.shape[2]: a for a in self.bias_xs}
for block in self.dec_blocks:
xs, block_stats = block(xs, activations, get_latents=get_latents)
stats.append(block_stats)
xs[self.H.image_size] = self.final_fn(xs[self.H.image_size])
return xs[self.H.image_size], stats
def forward_uncond(self, n, t=None, y=None):
xs = {}
for bias in self.bias_xs:
xs[bias.shape[2]] = bias.repeat(n, 1, 1, 1)
for idx, block in enumerate(self.dec_blocks):
try:
temp = t[idx]
except TypeError:
temp = t
xs = block.forward_uncond(xs, temp)
xs[self.H.image_size] = self.final_fn(xs[self.H.image_size])
return xs[self.H.image_size]
def forward_manual_latents(self, n, latents, t=None):
xs = {}
for bias in self.bias_xs:
xs[bias.shape[2]] = bias.repeat(n, 1, 1, 1)
for block, lvs in itertools.zip_longest(self.dec_blocks, latents):
xs = block.forward_uncond(xs, t, lvs=lvs)
xs[self.H.image_size] = self.final_fn(xs[self.H.image_size])
return xs[self.H.image_size]
class VAE(HModule):
def build(self):
self.encoder = Encoder(self.H)
self.decoder = Decoder(self.H)
def forward(self, x, x_target):
activations = self.encoder.forward(x)
px_z, stats = self.decoder.forward(activations)
distortion_per_pixel = self.decoder.out_net.nll(px_z, x_target)
rate_per_pixel = torch.zeros_like(distortion_per_pixel)
ndims = np.prod(x.shape[1:])
for statdict in stats:
rate_per_pixel += statdict['kl'].sum(dim=(1, 2, 3))
rate_per_pixel /= ndims
elbo = (distortion_per_pixel + rate_per_pixel).mean()
return dict(elbo=elbo, distortion=distortion_per_pixel.mean(), rate=rate_per_pixel.mean())
def forward_get_latents(self, x):
activations = self.encoder.forward(x)
_, stats = self.decoder.forward(activations, get_latents=True)
return stats
def forward_uncond_samples(self, n_batch, t=None):
px_z = self.decoder.forward_uncond(n_batch, t=t)
return self.decoder.out_net.sample(px_z)
def forward_samples_set_latents(self, n_batch, latents, t=None):
px_z = self.decoder.forward_manual_latents(n_batch, latents, t=t)
return self.decoder.out_net.sample(px_z)