Skip to content

Latest commit

 

History

History
347 lines (247 loc) · 11.8 KB

README.md

File metadata and controls

347 lines (247 loc) · 11.8 KB

Spatially Variable Genes

Spatially variable genes (SVGs) are genes whose expression levels vary significantly across different spatial regions within a tissue or across cells in a spatially structured context.

Repository: openproblems-bio/task_spatially_variable_genes

Description

Recent years have witnessed significant progress in spatially-resolved transcriptome profiling techniques that simultaneously characterize cellular gene expression and their physical position, generating spatial transcriptomic (ST) data. The application of these techniques has dramatically advanced our understanding of disease and developmental biology. One common task for all ST profiles, regardless of the employed protocols, is to identify genes that exhibit spatial patterns. These genes, defined as spatially variable genes (SVGs), contain additional information about the spatial structure of the tissues of interest, compared to highly variable genes (HVGs).

Identification of spatially variable genes is crucial to for studying spatial domains within tissue microenvironmnets, developmental gradients and cell signaling pathways. In this task we attempt to evaluate various methods for detecting SVGs using a number of realistic simulated datasets with diverse patterns derived from real-world spatial transcriptomics data using scDesign3. Synthetic data is generated by mixing a Gaussian Process (GP) model and a non-spatial model (obtained by shuffling mean parameters of the GP model to remove spatial correlation between spots) to generate gene expressions with various spatial variability. For more details, please refer to our manuscript and Github.

Authors & contributors

name roles
Zhijian Li author, maintainer
Zain M. Patel author
Dongyuan Song author
Guanao Yan author
Jingyi Jessica Li author
Luca Pinello author
Robrecht Cannoodt contributor
Sai Nirmayi Yasa contributor

API

flowchart LR
  file_common_dataset("Common Dataset")
  file_dataset("Dataset")
  comp_control_method[/"Control method"/]
  comp_method[/"Method"/]
  file_output("Output")
  comp_metric[/"Metric"/]
  file_score("Score")
  file_simulated_dataset("Common Dataset")
  file_solution("Solution")
  file_dataset---comp_control_method
  file_dataset---comp_method
  comp_control_method-->file_output
  comp_method-->file_output
  file_output---comp_metric
  comp_metric-->file_score
  file_solution---comp_control_method
  file_solution---comp_metric
Loading

File format: Common Dataset

A subset of the common dataset.

Example file: resources_test/common/mouse_brain_coronal/dataset.h5ad

Format:

AnnData object
 var: 'feature_id', 'feature_name'
 obsm: 'spatial'
 layers: 'counts', 'counts'
 uns: 'dataset_id', 'dataset_name', 'dataset_url', 'dataset_reference', 'dataset_summary', 'dataset_description', 'dataset_organism'

Data structure:

Slot Type Description
var["feature_id"] string (Optional) Unique identifier for the feature, usually a ENSEMBL gene id.
var["feature_name"] string A human-readable name for the feature, usually a gene symbol.
obsm["spatial"] double Spatial coordinates for each spot.
layers["counts"] integer Raw counts.
layers["counts"] double Normalized expression values.
uns["dataset_id"] string A unique identifier for the dataset.
uns["dataset_name"] string (Optional) Nicely formatted name.
uns["dataset_url"] string (Optional) Link to the original source of the dataset.
uns["dataset_reference"] string (Optional) Bibtex reference of the paper in which the dataset was published.
uns["dataset_summary"] string (Optional) Short description of the dataset.
uns["dataset_description"] string (Optional) Long description of the dataset.
uns["dataset_organism"] string (Optional) The organism of the sample in the dataset.

File format: Dataset

The dataset without spatially variable genes.

Example file: resources_test/task_spatially_variable_genes/mouse_brain_coronal/dataset.h5ad

Format:

AnnData object
 var: 'feature_id', 'feature_name'
 obsm: 'spatial'
 layers: 'counts', 'normalized'
 uns: 'dataset_id', 'dataset_name'

Data structure:

Slot Type Description
var["feature_id"] string (Optional) Unique identifier for the feature, in this case a ENSEMBL gene id suffixed with alpha value.
var["feature_name"] string (Optional) A human-readable name for the feature, in this case a gene symbol suffixed with alpha value.
obsm["spatial"] double Spatial coordinates for each spot.
layers["counts"] integer Raw counts.
layers["normalized"] double Normalised expression values.
uns["dataset_id"] string A unique identifier for the dataset.
uns["dataset_name"] string (Optional) Nicely formatted name.

Component type: Control method

Quality control methods for verifying the pipeline.

Arguments:

Name Type Description
--input_data file The dataset without spatially variable genes.
--input_solution file Anndata with true spatial variability.
--output file (Output) Anndata with estimate spatial variability.

Component type: Method

A spatially variable gene identification method.

Arguments:

Name Type Description
--input_data file The dataset without spatially variable genes.
--output file (Output) Anndata with estimate spatial variability.

File format: Output

Anndata with estimate spatial variability.

Example file: resources_test/task_spatially_variable_genes/mouse_brain_coronal/output.h5ad

Description:

Anndata with estimated spatial variability score for each gene.

Format:

AnnData object
 var: 'feature_id', 'feature_name', 'pred_spatial_var_score'
 uns: 'dataset_id', 'method_id'

Data structure:

Slot Type Description
var["feature_id"] string Feature ID.
var["feature_name"] string (Optional) Feature name.
var["pred_spatial_var_score"] double Predicted spatial variability score.
uns["dataset_id"] string A unique identifier for the dataset.
uns["method_id"] string A unique identifier for the method.

Component type: Metric

A spatially variable genes identification metric.

Arguments:

Name Type Description
--input_method file Anndata with estimate spatial variability.
--input_solution file Anndata with true spatial variability.
--output file (Output) Metric score file.

File format: Score

Metric score file.

Example file: resources_test/task_spatially_variable_genes/mouse_brain_coronal/score.h5ad

Format:

AnnData object
 uns: 'dataset_id', 'method_id', 'metric_ids', 'metric_values'

Data structure:

Slot Type Description
uns["dataset_id"] string A unique identifier for the dataset.
uns["method_id"] string A unique identifier for the method.
uns["metric_ids"] string One or more unique metric identifiers.
uns["metric_values"] double The metric values obtained for the given prediction. Must be of same length as ‘metric_ids’.

File format: Common Dataset

A subset of the common dataset.

Example file: resources_test/task_spatially_variable_genes/mouse_brain_coronal/simulated_dataset.h5ad

Format:

AnnData object
 var: 'feature_id', 'feature_name', 'orig_feature_id', 'orig_feature_name', 'true_spatial_var_score'
 obsm: 'spatial'
 layers: 'counts'
 uns: 'dataset_id', 'dataset_name', 'dataset_url', 'dataset_reference', 'dataset_summary', 'dataset_description', 'dataset_organism'

Data structure:

Slot Type Description
var["feature_id"] string (Optional) Unique identifier for the feature, in this case a ENSEMBL gene id suffixed with alpha value.
var["feature_name"] string A human-readable name for the feature, in this case a gene symbol suffixed with alpha value.
var["orig_feature_id"] string (Optional) Original unique identifier for the feature, usually a ENSEMBL gene id.
var["orig_feature_name"] string Original human-readable name for the feature, usually a gene symbol.
var["true_spatial_var_score"] double True spatial variability score.
obsm["spatial"] double Spatial coordinates for each spot.
layers["counts"] integer Raw counts.
uns["dataset_id"] string A unique identifier for the dataset.
uns["dataset_name"] string Nicely formatted name.
uns["dataset_url"] string Link to the original source of the dataset.
uns["dataset_reference"] string (Optional) Bibtex reference of the paper in which the dataset was published.
uns["dataset_summary"] string Short description of the dataset.
uns["dataset_description"] string Long description of the dataset.
uns["dataset_organism"] string The organism of the sample in the dataset.

File format: Solution

Anndata with true spatial variability.

Example file: resources_test/task_spatially_variable_genes/mouse_brain_coronal/solution.h5ad

Description:

Anndata with true spatial variability score for each gene.

Format:

AnnData object
 var: 'feature_id', 'feature_name', 'orig_feature_name', 'true_spatial_var_score'
 obsm: 'spatial'
 uns: 'dataset_id', 'dataset_name', 'dataset_url', 'dataset_reference', 'dataset_summary', 'dataset_description', 'dataset_organism'

Data structure:

Slot Type Description
var["feature_id"] string (Optional) Unique identifier for the feature (e.g., ESEMBL gene id suffixed with alpha value).
var["feature_name"] string A human-readable name for the feature, in this case a gene symbol suffixed with alpha value.
var["orig_feature_name"] string Original human-readable name for the feature, usually a gene symbol.
var["true_spatial_var_score"] double True spatial variability score.
obsm["spatial"] double Spatial coordinates for each spot.
uns["dataset_id"] string A unique identifier for the dataset.
uns["dataset_name"] string Nicely formatted name.
uns["dataset_url"] string Link to the original source of the dataset.
uns["dataset_reference"] string (Optional) Bibtex reference of the paper in which the dataset was published.
uns["dataset_summary"] string Short description of the dataset.
uns["dataset_description"] string Long description of the dataset.
uns["dataset_organism"] string The organism of the sample in the dataset.