-
Notifications
You must be signed in to change notification settings - Fork 177
/
simulated_annealing_sampler.py
130 lines (102 loc) · 5.24 KB
/
simulated_annealing_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""
Optuna example that implements a user-defined relative sampler based on Simulated Annealing
algorithm. Please refer to https://en.wikipedia.org/wiki/Simulated_annealing for Simulated
Annealing itself.
Note that this implementation isn't intended to be used for production purposes and
has the following limitations:
- The sampler only supports `Trial.suggest_float(low, high, step=None, log=False)` method.
- The implementation prioritizes simplicity over optimization efficiency.
You can run this example as follows:
$ python simulated_annealing_sampler.py
"""
import numpy as np
import optuna
from optuna import distributions
from optuna.samplers import BaseSampler
from optuna.study import StudyDirection
from optuna.trial import TrialState
class SimulatedAnnealingSampler(BaseSampler):
def __init__(self, temperature=100, cooldown_factor=0.9, neighbor_range_factor=0.1, seed=None):
self._rng = np.random.RandomState(seed)
self._independent_sampler = optuna.samplers.RandomSampler(seed=seed)
self._temperature = temperature
self.cooldown_factor = cooldown_factor
self.neighbor_range_factor = neighbor_range_factor
self._current_trial = None
def infer_relative_search_space(self, study, trial):
return optuna.search_space.intersection_search_space(study.trials)
def sample_relative(self, study, trial, search_space):
if search_space == {}:
# The relative search space is empty (it means this is the first trial of a study).
return {}
# The rest of this method is an implementation of Simulated Annealing (SA) algorithm.
prev_trial = self._get_last_complete_trial(study)
# Update the current state of SA if the transition is accepted.
if self._rng.uniform(0, 1) <= self._transition_probability(study, prev_trial):
self._current_trial = prev_trial
# Pick a new neighbor (i.e., parameters).
params = self._sample_neighbor_params(search_space)
# Decrease the temperature.
self._temperature *= self.cooldown_factor
return params
def _sample_neighbor_params(self, search_space):
# Generate a sufficiently near neighbor (i.e., parameters).
#
# In this example, we define a sufficiently near neighbor as
# `self.neighbor_range_factor * 100` percent region of the entire
# search space centered on the current point.
params = {}
for param_name, param_distribution in search_space.items():
if isinstance(param_distribution, distributions.FloatDistribution):
assert param_distribution.step is None, "step is not supported"
assert not param_distribution.log, "log is not supported"
current_value = self._current_trial.params[param_name]
width = (
param_distribution.high - param_distribution.low
) * self.neighbor_range_factor
neighbor_low = max(current_value - width, param_distribution.low)
neighbor_high = min(current_value + width, param_distribution.high)
params[param_name] = self._rng.uniform(neighbor_low, neighbor_high)
else:
raise NotImplementedError(
"Unsupported distribution {}.".format(param_distribution)
)
return params
def _transition_probability(self, study, prev_trial):
if self._current_trial is None:
return 1.0
prev_value = prev_trial.value
current_value = self._current_trial.value
# `prev_trial` is always accepted if it has a better value than the current trial.
if study.direction == StudyDirection.MINIMIZE and prev_value <= current_value:
return 1.0
elif study.direction == StudyDirection.MAXIMIZE and prev_value >= current_value:
return 1.0
# Calculate the probability of accepting `prev_trial` that has a worse value than
# the current trial.
return np.exp(-abs(current_value - prev_value) / self._temperature)
@staticmethod
def _get_last_complete_trial(study):
complete_trials = study.get_trials(deepcopy=False, states=[TrialState.COMPLETE])
return complete_trials[-1]
def sample_independent(self, study, trial, param_name, param_distribution):
# In this example, this method is invoked only in the first trial of a study.
# The parameters of the trial are sampled by using `RandomSampler` as follows.
return self._independent_sampler.sample_independent(
study, trial, param_name, param_distribution
)
# Define a simple 2-dimensional objective function whose minimum value is -1 when (x, y) = (0, -1).
def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_float("y", -1, 1)
return x**2 + y
if __name__ == "__main__":
# Run optimization by using `SimulatedAnnealingSampler`.
sampler = SimulatedAnnealingSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100)
print("Best trial:")
print(" Value: ", study.best_trial.value)
print(" Params: ")
for key, value in study.best_trial.params.items():
print(" {}: {}".format(key, value))