diff --git a/README.md b/README.md index 02570e3..a8f304a 100644 --- a/README.md +++ b/README.md @@ -6,7 +6,12 @@ This is a pre-release of the software. The codebase will be refactored in the ne ## Localisation Benchmark The localisation benchmark runs LiDAR SLAM methods ([Fast-LIO-SLAM](https://github.com/gisbi-kim/FAST_LIO_SLAM), [SC-LIO-SAM](https://github.com/gisbi-kim/SC-LIO-SAM), [ImMesh](https://github.com/ori-drs/ImMesh_hesai)) and LiDAR Bundle Adjustment method ([HBA](https://github.com/hku-mars/HBA)). The resultant trajectory are evaluated against the ground truth trajectory using [evo](https://github.com/MichaelGrupp/evo). +Build the docker container and run the methods: ```bash +cd oxford_spires_dataset +docker compose -f .docker_loc/docker-compose.yml run --build spires + +# in the docker python scripts/localisation_benchmark/colmap.py python scripts/localisation_benchmark/fast_lio_slam.py python scripts/localisation_benchmark/immesh.py @@ -17,7 +22,7 @@ python scripts/localisation_benchmark/vilens_hba.py ## Reconstruction Benchmark The reconstruction benchmark runs Structure-from-Motion ([COLMAP](https://colmap.github.io/)), Multi-view Stereo ([OpenMVS](https://github.com/cdcseacave/openMVS)), radiance field methods ([Nerfstudio](https://github.com/nerfstudio-project/nerfstudio/tree/main/nerfstudio)'s Nerfacto and Splatfacto), and generates 3D point cloud reconstruction, which is evaluated against the TLS-captured ground truth 3D point cloud. -Build the docker container and run +Build the docker container and run the methods: ```bash cd oxford_spires_dataset docker compose -f .docker/docker-compose.yml run --build spires