forked from jacobgil/pytorch-grad-cam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cam.py
144 lines (122 loc) · 5.36 KB
/
cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import os
import cv2
import numpy as np
import torch
from torchvision import models
from pytorch_grad_cam import (
GradCAM, HiResCAM, ScoreCAM, GradCAMPlusPlus,
AblationCAM, XGradCAM, EigenCAM, EigenGradCAM,
LayerCAM, FullGrad, GradCAMElementWise
)
from pytorch_grad_cam import GuidedBackpropReLUModel
from pytorch_grad_cam.utils.image import (
show_cam_on_image, deprocess_image, preprocess_image
)
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu',
help='Torch device to use')
parser.add_argument(
'--image-path',
type=str,
default='./examples/both.png',
help='Input image path')
parser.add_argument('--aug-smooth', action='store_true',
help='Apply test time augmentation to smooth the CAM')
parser.add_argument(
'--eigen-smooth',
action='store_true',
help='Reduce noise by taking the first principle component'
'of cam_weights*activations')
parser.add_argument('--method', type=str, default='gradcam',
choices=[
'gradcam', 'hirescam', 'gradcam++',
'scorecam', 'xgradcam', 'ablationcam',
'eigencam', 'eigengradcam', 'layercam',
'fullgrad', 'gradcamelementwise'
],
help='CAM method')
parser.add_argument('--output-dir', type=str, default='output',
help='Output directory to save the images')
args = parser.parse_args()
if args.device:
print(f'Using device "{args.device}" for acceleration')
else:
print('Using CPU for computation')
return args
if __name__ == '__main__':
""" python cam.py -image-path <path_to_image>
Example usage of loading an image and computing:
1. CAM
2. Guided Back Propagation
3. Combining both
"""
args = get_args()
methods = {
"gradcam": GradCAM,
"hirescam": HiResCAM,
"scorecam": ScoreCAM,
"gradcam++": GradCAMPlusPlus,
"ablationcam": AblationCAM,
"xgradcam": XGradCAM,
"eigencam": EigenCAM,
"eigengradcam": EigenGradCAM,
"layercam": LayerCAM,
"fullgrad": FullGrad,
"gradcamelementwise": GradCAMElementWise
}
model = models.resnet50(pretrained=True).to(torch.device(args.device)).eval()
# Choose the target layer you want to compute the visualization for.
# Usually this will be the last convolutional layer in the model.
# Some common choices can be:
# Resnet18 and 50: model.layer4
# VGG, densenet161: model.features[-1]
# mnasnet1_0: model.layers[-1]
# You can print the model to help chose the layer
# You can pass a list with several target layers,
# in that case the CAMs will be computed per layer and then aggregated.
# You can also try selecting all layers of a certain type, with e.g:
# from pytorch_grad_cam.utils.find_layers import find_layer_types_recursive
# find_layer_types_recursive(model, [torch.nn.ReLU])
target_layers = [model.layer4]
rgb_img = cv2.imread(args.image_path, 1)[:, :, ::-1]
rgb_img = np.float32(rgb_img) / 255
input_tensor = preprocess_image(rgb_img,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]).to(args.device)
# We have to specify the target we want to generate
# the Class Activation Maps for.
# If targets is None, the highest scoring category (for every member in the batch) will be used.
# You can target specific categories by
# targets = [ClassifierOutputTarget(281)]
# targets = [ClassifierOutputTarget(281)]
targets = None
# Using the with statement ensures the context is freed, and you can
# recreate different CAM objects in a loop.
cam_algorithm = methods[args.method]
with cam_algorithm(model=model,
target_layers=target_layers) as cam:
# AblationCAM and ScoreCAM have batched implementations.
# You can override the internal batch size for faster computation.
cam.batch_size = 32
grayscale_cam = cam(input_tensor=input_tensor,
targets=targets,
aug_smooth=args.aug_smooth,
eigen_smooth=args.eigen_smooth)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
gb_model = GuidedBackpropReLUModel(model=model, device=args.device)
gb = gb_model(input_tensor, target_category=None)
cam_mask = cv2.merge([grayscale_cam, grayscale_cam, grayscale_cam])
cam_gb = deprocess_image(cam_mask * gb)
gb = deprocess_image(gb)
os.makedirs(args.output_dir, exist_ok=True)
cam_output_path = os.path.join(args.output_dir, f'{args.method}_cam.jpg')
gb_output_path = os.path.join(args.output_dir, f'{args.method}_gb.jpg')
cam_gb_output_path = os.path.join(args.output_dir, f'{args.method}_cam_gb.jpg')
cv2.imwrite(cam_output_path, cam_image)
cv2.imwrite(gb_output_path, gb)
cv2.imwrite(cam_gb_output_path, cam_gb)