This folder contains the guidance for Swin Transformer Quantization Toolkit.
name | resolution | acc@1 | acc@5 | #params | FLOPs | model |
---|---|---|---|---|---|---|
Swin-T | 224x224 | 81.2 | 95.5 | 28M | 4.5G | github/baidu |
Swin-S | 224x224 | 83.2 | 96.2 | 50M | 8.7G | github/baidu |
Swin-B | 224x224 | 83.5 | 96.5 | 88M | 15.4G | github/baidu |
Swin-B | 384x384 | 84.5 | 97.0 | 88M | 47.1G | github/baidu |
name | resolution | acc@1 | acc@5 | #params | FLOPs | 22K model | 1K model |
---|---|---|---|---|---|---|---|
Swin-B | 224x224 | 85.2 | 97.5 | 88M | 15.4G | github/baidu | github/baidu |
Swin-B | 384x384 | 86.4 | 98.0 | 88M | 47.1G | github/baidu | github/baidu |
Swin-L | 224x224 | 86.3 | 97.9 | 197M | 34.5G | github/baidu | github/baidu |
Swin-L | 384x384 | 87.3 | 98.2 | 197M | 103.9G | github/baidu | github/baidu |
Note: access code for baidu
is swin
.
-
Initialize submodule
git submodule update --init
-
Run the container.
You can choose pytorch version you want. Here, we list some possible images:
nvcr.io/nvidia/pytorch:22.09-py3
contains the PyTorch 1.13.0 and python 3.8
-
Install additional dependencies (not included by container)
pip install timm==0.4.12 pip install termcolor==1.1.0
We use standard ImageNet dataset, you can download it from http://image-net.org/. We provide the following two ways to load data:
-
For standard folder dataset, move validation images to labeled sub-folders. The file structure should look like:
$ tree data imagenet ├── train │ ├── class1 │ │ ├── img1.jpeg │ │ ├── img2.jpeg │ │ └── ... │ ├── class2 │ │ ├── img3.jpeg │ │ └── ... │ └── ... └── val ├── class1 │ ├── img4.jpeg │ ├── img5.jpeg │ └── ... ├── class2 │ ├── img6.jpeg │ └── ... └── ...
-
To boost the slow speed when reading images from massive small files, we also support zipped ImageNet, which includes four files:
train.zip
,val.zip
: which store the zipped folder for train and validate splits.train_map.txt
,val_map.txt
: which store the relative path in the corresponding zip file and ground truth label. Make sure the data folder looks like this:
$ tree data data └── ImageNet-Zip ├── train_map.txt ├── train.zip ├── val_map.txt └── val.zip $ head -n 5 data/ImageNet-Zip/val_map.txt ILSVRC2012_val_00000001.JPEG 65 ILSVRC2012_val_00000002.JPEG 970 ILSVRC2012_val_00000003.JPEG 230 ILSVRC2012_val_00000004.JPEG 809 ILSVRC2012_val_00000005.JPEG 516 $ head -n 5 data/ImageNet-Zip/train_map.txt n01440764/n01440764_10026.JPEG 0 n01440764/n01440764_10027.JPEG 0 n01440764/n01440764_10029.JPEG 0 n01440764/n01440764_10040.JPEG 0 n01440764/n01440764_10042.JPEG 0
To calibrate and then evaluate a calibrated Swin Transformer
on ImageNet val, run:
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> \
--master_port 12345 main.py \
--calib \
--cfg <config-file> \
--resume <checkpoint> \
--data-path <imagenet-path> \
--num-calib-batch <batch-number> \
--calib-batchsz <batch-size> \
--int8-mode <mode>\
--calib-output-path <output-path> \
For example, to calibrate the Swin-T
with a single GPU: (For calibration, we only support using one single GPU). You can see calib.sh for reference.
python -m torch.distributed.launch --nproc_per_node 1 \
--master_port 12345 main.py \
--calib \
--cfg SwinTransformer/configs/swin_tiny_patch4_window7_224.yaml \
--resume swin_tiny_patch4_window7_224.pth \
--data-path <imagenet-path> \
--num-calib-batch 10 \
--calib-batchsz 8\
--int8-mode 1\
--calib-output-path calib-checkpoint
name | resolution | Original Accuracy | PTQ(mode=1) | QAT(mode=1) |
---|---|---|---|---|
Swin-T | 224x224 | 81.18% | 80.75%(-0.43%) | 81.00%(-0.18%) |
Swin-S | 224x224 | 83.21% | 82.90%(-0.31%) | 83.00%(-0.21%) |
Swin-B | 224x224 | 83.42% | 83.10%(-0.32%) | 83.42%(-0.00%) |
Swin-B | 384x384 | 84.47% | 84.05%(-0.42%) | 84.16%(-0.31%) |
Swin-L | 224x224 | 86.25% | 83.53%(-2.72%) | 86.12%(-0.13%) |
Swin-L | 384x384 | 87.25% | 83.10%(-4.15%) | 87.11%(-0.14%) |
For Swin-T/S/B, set --int8-mode 1
suffices to get negligible accuracy loss for both PTQ/QAT. However, for Swin-L, --int8-mode 1
cannot get a satisfactory result for PTQ accuracy. This is due to that --int8-mode 1
means all GEMM outputs(INT32) are quantized to INT8, and in order to improve PTQ performance some GEMM output quantization have to be disabled. --int8-mode 2
means quantization of fc2
and PatchMerge
outputs are disabled. The result is as follows:
name | resolution | Original Accuracy | PTQ(mode=1) | PTQ(mode=2) |
---|---|---|---|---|
Swin-L | 224x224 | 86.25% | 83.53%(-2.72%) | 85.93%(-0.32%) |
Swin-L | 384x384 | 87.25% | 83.10%(-4.15%) | 86.92%(-0.33%) |
To evaluate a pre-calibrated Swin Transformer
on ImageNet val, run:
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> \
--master_port 12345 main.py \
--eval \
--cfg <config-file> \
--resume <calibrated-checkpoint> \
--data-path <imagenet-path> \
--int8-mode <mode> \
--batch-size <batch-size>
For example, to evaluate the Swin-T
with a single GPU. You can see run.sh for reference.
python -m torch.distributed.launch --nproc_per_node 1 \
--master_port 12345 main.py \
--eval \
--cfg SwinTransformer/configs/swin_tiny_patch4_window7_224.yaml \
--resume ./calib-checkpoint/swin_tiny_patch4_window7_224_calib.pth \
--data-path <imagenet-path> \
--int8-mode 1\
--batch-size 128
To run QAT with Swin Transformer
, run:
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> \
--master_port 12345 main.py \
--train \
--cfg <config-file> \
--resume <calibrated-checkpoint> \
--data-path <imagenet-path> \
--quant-mode <mode> \
--teacher <uncalibrated-checkpoint> \
--output <qat-output-path> \
--distill \
--int8-mode <mode>\
--batch-size <batch-size> \
--num-epochs <num-of-epochs> \
--qat-lr <learning-rate-of-QAT>
For example, to do QAT with Swin Transformer
by 4 GPU on a single node for 5 epochs, run: (You can see qat.sh for reference.)
python -m torch.distributed.launch --nproc_per_node 4 \
--master_port 12345 main.py \
--train \
--cfg SwinTransformer/configs/swin_tiny_patch4_window7_224.yaml \
--resume ./calib-checkpoint/swin_tiny_patch4_window7_224_calib.pth \
--data-path /data/datasets/ILSVRC2012 \
--quant-mode ft2 \
--teacher swin_tiny_patch4_window7_224.pth \
--output qat-output \
--distill \
--int8-mode 1\
--batch-size 128 \
--num-epochs 5 \
--qat-lr 1e-5