forked from yaquanzhang/mGRN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NN_main_mimic3_phe.py
215 lines (190 loc) · 9.88 KB
/
NN_main_mimic3_phe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Mimic 3 datasets. in hospital mortality
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# The GPU id to use, usually either "0" or "1"
gpu_index = 0
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_index)
import mimic3_utils.common_utils as common_utils
import numpy as np
import torch
import math
import shutil
import time
import get_model
import pandas as pd
import train_model
from sklearn import metrics
import sklearn.utils as sk_utils
import pathlib
class CustomDataset(torch.utils.data.BatchSampler):
def __init__(self, data_dir, batch_size, input_size_list_raw, device, max_length, batch_first = False, shuffle = True):
data = np.load(data_dir, allow_pickle=True)
X_array_raw = data['arr_0']
Y_array = data['arr_1']
dtype = X_array_raw[0].dtype
Xs_padded = np.zeros((len(X_array_raw), max_length, X_array_raw[0].shape[1]), dtype=dtype)
# since some time series are too long, we truncate them and keep only the last max_length steps.
for i, x in enumerate(X_array_raw):
this_length = min(x.shape[0], max_length)
Xs_padded[i, :this_length, :] = x[-this_length:]
X_array_raw = Xs_padded
X_array = np.zeros(X_array_raw.shape) # shape: (Sample size, T, n_features)
# change the sequence of the features
beg_index = 0
for sub_list in input_size_list_raw:
this_size = len(sub_list)
X_array[:, :, beg_index:(beg_index + this_size)] = X_array_raw[:, :, sub_list]
beg_index = beg_index + this_size
X_array = X_array.astype('float32')
self.n_examples = X_array.shape[0]
self.steps = math.ceil(self.n_examples/batch_size)
self.X_array = torch.tensor(X_array.copy()).to(device).float()
self.Y_array = torch.tensor(Y_array.copy()).to(device).long()
if not batch_first:
self.X_array = self.X_array.permute(1, 0, 2)
self.shuffle = shuffle
self.on_epoch_end()
self.batch_size = batch_size
def __iter__(self):
# return permuted tensors.
for i in range(0, self.n_examples, self.batch_size):
X = self.X_array[:, i:i + self.batch_size]
Y = self.Y_array[i:i + self.batch_size]
yield (X, Y)
def __len__(self):
return self.steps
def on_epoch_end(self):
if self.shuffle:
shuffle_index = torch.randperm(self.X_array.size(1))
self.X_array = self.X_array[:, shuffle_index, :]
self.Y_array = self.Y_array[shuffle_index]
# self.index = 0
class CheckAccuracy:
def __init__(self, criterion, device, is_print = True):
self.criterion = criterion
self.is_print = is_print
self.device = device
def get_metrics(self, Y_array, predictions_probability):
auc_macro = metrics.roc_auc_score(Y_array, predictions_probability, average="macro")
auc_micro = metrics.roc_auc_score(Y_array, predictions_probability, average="micro")
return auc_macro, auc_micro
def check_accuracy(self, model, test_data, n_resample = None):
# test_data: data loadersa
model.eval()
Y_test_list = []
output_list = []
with torch.no_grad():
for i, this_batch in enumerate(test_data):
minibatch_X = this_batch[0]
minibatch_Y = this_batch[1]
minibatch_Y_cpu = minibatch_Y.cpu().numpy()
outputs = model(minibatch_X)
Y_test_list.append(minibatch_Y_cpu)
output_list.append(outputs.cpu())
test_data.on_epoch_end()
validation_outputs = torch.cat(output_list, dim=0).to(self.device)
Y_test = np.concatenate(Y_test_list, axis=0)
Y_test = torch.tensor(Y_test).to(self.device).long()
if validation_outputs.shape[1] == 1:
validation_outputs = validation_outputs.view(validation_outputs.shape[0])
validation_loss = self.criterion(validation_outputs, Y_test).item()
Y_array_cpu = Y_test.cpu().numpy()
predictions_probability = torch.sigmoid(validation_outputs).cpu().numpy()
auc_macro, auc_micro = self.get_metrics(Y_array_cpu, predictions_probability)
result_dict = {'loss': validation_loss, 'auc_macro': auc_macro, 'auc_micro': auc_micro}
if n_resample is None:
if self.is_print:
print("validation loss: {:.4f}".format(validation_loss))
print("validation auc_macro: {:.4f}".format(auc_macro))
print("validation auc_micro: {:.4f}".format(auc_micro))
else:
# resample to calculate confidence intervals
print("resampling results")
resample_result_list = []
data = np.zeros((Y_array_cpu.shape[0], Y_array_cpu.shape[1] + predictions_probability.shape[1]))
data[:, 0:Y_array_cpu.shape[1]] = Y_array_cpu
data[:, Y_array_cpu.shape[1]:] = predictions_probability
for i in range(n_resample):
resample_data = sk_utils.resample(data, n_samples=len(data))
auc_macro, auc_micro = self.get_metrics(resample_data[:, 0:Y_array_cpu.shape[1]],
resample_data[:, Y_array_cpu.shape[1]:])
resample_result_list.append({'auc_macro': auc_macro, 'auc_micro': auc_micro})
resample_result = pd.DataFrame(resample_result_list)
for metric in ['auc_macro', 'auc_micro']:
# update the point value by mean
result_dict[metric] = resample_result[metric].mean()
result_dict[metric + '_lower'] = resample_result[metric].quantile(0.025)
result_dict[metric + '_upper'] = resample_result[metric].quantile(0.975)
if self.is_print:
print(result_dict)
return result_dict
class KerasBinaryCrossentropy(torch.nn.Module):
# a combination of 25 clas
def __init__(self, num_classes):
super().__init__()
self.num_classes = num_classes
self.cross_entropy = torch.nn.BCELoss()
def forward(self, preds, target):
loss = 0
predicts_probability = torch.sigmoid(preds)
for i in range(self.num_classes):
this_target = target[:, i].float()
this_predicts = predicts_probability[:, i]
loss = loss + self.cross_entropy(this_predicts, this_target)
loss = loss / self.num_classes
return loss
def single_model(result_dir_root, model_param_dict, train_data_dir, val_data_dir, max_length, training_param_dict,
input_size_list_raw):
print(result_dir_root)
########################### model training
print("training...")
model_saving_dir = os.path.join(result_dir_root, 'model')
if not os.path.exists(model_saving_dir):
os.makedirs(model_saving_dir)
# data preparation
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
batch_size = training_param_dict['batch_size']
del training_param_dict['batch_size']
train_data = CustomDataset(train_data_dir, batch_size, input_size_list_raw, device, max_length)
val_data = CustomDataset(val_data_dir, 256, input_size_list_raw, device, max_length, shuffle = False)
model_param_dict['device'] = device
print('print(model_param_dict)', model_param_dict)
print('print(training_param_dict)', training_param_dict)
np.savez(os.path.join(model_saving_dir, 'param_dict'), model_param_dict, training_param_dict)
model = get_model.get_model(**model_param_dict)
criterion = KerasBinaryCrossentropy(model_param_dict['num_classes'])
check_accuracy_obj = CheckAccuracy(criterion, device)
print('The number of trainable parameters is', model.param_num)
val_result = train_model.train_mimic3(model, train_data, val_data, model_saving_dir, criterion,
check_accuracy_obj, **training_param_dict)
print('Validation result', val_result)
accuray_result = pd.DataFrame([val_result])
accuray_result.to_excel(result_dir_root + "accuracy_validation.xlsx")
if __name__ == '__main__':
#### parameters
task = 'phenotyping'
data_root_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), 'mimic3_utils', task) # data folder
result_dir = os.path.join(pathlib.Path(__file__).parent.absolute(),'mimic3', task) # save results in this folder
# The experiments in Harutyunyan et al. (2019) are coded with Keras.
# We enable Karas initialization so that results are comparable.
model_param_dict = {"model_name": 'mGRN', "n_feature": 76, "n_rnn_units": 32,
"num_classes": 25, "batch_first": False,
"size_of": 2, "dropouti": 0.1, "dropoutw": 0, "dropouto": 0.1,
"keras_initialization": True}
training_param_dict = {'batch_size': 16, 'learning_rate': 1e-3, 'weight_decay':1e-5,
'num_epochs': 100, 'lr_decay_loss': None, 'lr_decay_factor': None,
'save_metric': 'loss', 'save_model_starting_epoch':10}
max_length = 200
####
train_data_dir = os.path.join(data_root_dir, 'train.npz')
val_data_dir = os.path.join(data_root_dir, 'val.npz')
header_dir = os.path.join(data_root_dir, 'header_list.npz')
# get the names of the columns
header_data = np.load(header_dir)
header = header_data['arr_0']
# grouping of features
input_size_list_raw = common_utils.get_input_size_raw(header)
input_size_list = [len(x) for x in input_size_list_raw]
model_param_dict['input_size_list'] = input_size_list
single_model(result_dir, model_param_dict, train_data_dir, val_data_dir, max_length, training_param_dict,
input_size_list_raw)