forked from SSProve/ssprove
-
Notifications
You must be signed in to change notification settings - Fork 0
/
OrderEnrichedCategory.v
697 lines (566 loc) · 26.7 KB
/
OrderEnrichedCategory.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
From Coq Require Import ssreflect ssrfun.
From Mon Require Export Base.
From Mon Require Import SPropBase.
From Coq Require Import RelationClasses Morphisms Relation_Definitions.
Set Primitive Projections.
Set Universe Polymorphism.
Set Polymorphic Inductive Cumulativity.
(*********************************************************)
(** Order-enriched Category **)
(*********************************************************)
Section Category.
Reserved Notation "f ⪷ g" (at level 65).
Reserved Notation "f ∙ g" (at level 55).
Cumulative Record ord_category : Type :=
mkOrdCategory
{ Obj :> Type
; Hom : Obj -> Obj -> Type
; ord_cat_le : forall {A B}, relation (Hom A B)
where "f ⪷ g" := (ord_cat_le f g)
; ord_cat_le_preorder : forall A B, PreOrder (@ord_cat_le A B)
; Id : forall A, Hom A A
; Comp : forall {A B C}, Hom B C -> Hom A B -> Hom A C
where "f ∙ g" := (Comp f g)
; Comp_proper : forall {A B C},
Proper (@ord_cat_le B C ==> @ord_cat_le A B ==> @ord_cat_le A C) Comp
; ord_cat_law1 : forall A B (f : Hom A B), Id _ ∙ f = f
; ord_cat_law2 : forall A B (f : Hom A B), f ∙ Id _ = f
; ord_cat_law3 : forall A B C D (f : Hom A B) (g : Hom B C) (h : Hom C D),
h ∙ (g ∙ f) = (h ∙ g) ∙ f
}.
Global Existing Instance ord_cat_le_preorder.
Global Existing Instance Comp_proper.
End Category.
Notation "C ⦅ A ; B ⦆" := (Hom C A B) (at level 60).
Notation "f ∙ g" := (Comp _ f g) (at level 55).
Notation "f ⪷ g" := (ord_cat_le _ f g) (at level 65).
Arguments Id {_} _.
(*********************************************************)
(** Functor, identity, composition **)
(*********************************************************)
Section Functor.
Context (C D : ord_category).
Cumulative Record ord_functor : Type :=
mkOrdFunctor
{ ofmapObj :> C -> D
; ofmap : forall {A B}, C⦅A;B⦆ -> D⦅ofmapObj A;ofmapObj B⦆
; ofmap_proper : forall A B, Proper (@ord_cat_le C A B ==> @ord_cat_le D _ _) ofmap
; ord_functor_law1 : forall A, ofmap (Id A) = Id _
; ord_functor_law2 : forall (X Y Z: C) (g : C⦅X;Y⦆) (f:C⦅Y;Z⦆),
ofmap (f ∙ g) = (ofmap f) ∙ (ofmap g)
}.
Global Existing Instance ofmap_proper.
End Functor.
Arguments mkOrdFunctor {_ _} _ _ _ _ _.
Arguments ofmap {_ _} _ {_ _} _.
Section FunctorId.
Context (C:ord_category).
Program Definition ord_functor_id : ord_functor C C :=
mkOrdFunctor (fun A => A) (fun _ _ f => f) _ _ _.
Next Obligation. cbv ; intuition. Qed.
End FunctorId.
Section FunctorComposition.
Context {C D E : ord_category} (F : ord_functor C D) (G : ord_functor D E).
Program Definition ord_functor_comp : ord_functor C E :=
mkOrdFunctor (fun A => G (F A)) (fun A B f=> ofmap G (ofmap F f)) _ _ _.
Next Obligation. cbv ; intuition; do 2 apply: ofmap_proper=> //. Qed.
Next Obligation. do 2 rewrite ord_functor_law1=> //. Qed.
Next Obligation. do 2 rewrite ord_functor_law2=> //. Qed.
End FunctorComposition.
(*********************************************************)
(** Product of two categories, **)
(** diagonal and projection functors, **)
(** product of two functors **)
(*********************************************************)
Section ProductCat.
Context (C D : ord_category).
Import SPropNotations.
Program Definition prod_cat : ord_category :=
mkOrdCategory (C × D)
(fun A B => C⦅nfst A ; nfst B⦆ × D⦅nsnd A ; nsnd B⦆)
(fun _ _ f g => nfst f ⪷ nfst g /\ nsnd f ⪷ nsnd g)
_
(fun A => ⟨Id (nfst A), Id (nsnd A)⟩)
(fun _ _ _ f g => ⟨nfst f ∙ nfst g, nsnd f ∙ nsnd g⟩)
_ _ _ _.
Next Obligation.
constructor ; cbv ; intuition ; etransitivity ; eassumption.
Qed.
Next Obligation.
cbv ; intuition; apply Comp_proper=> //.
Qed.
Next Obligation. rewrite 2!ord_cat_law1 //. Qed.
Next Obligation. rewrite 2!ord_cat_law2 //. Qed.
Next Obligation. rewrite 2!ord_cat_law3 //. Qed.
End ProductCat.
Section FunctorToProdCat.
Context {I C1 C2} (F1 : ord_functor I C1) (F2 : ord_functor I C2).
Program Definition functor_to_prod_cat : ord_functor I (prod_cat C1 C2) :=
mkOrdFunctor (fun A => ⟨F1 A, F2 A⟩) (fun _ _ f => ⟨ofmap F1 f, ofmap F2 f⟩) _ _ _.
Next Obligation. cbv ; intuition; apply ofmap_proper=> //. Qed.
Next Obligation. rewrite 2!ord_functor_law1 //. Qed.
Next Obligation. rewrite 2!ord_functor_law2 //. Qed.
End FunctorToProdCat.
Definition diagonal_functor (C:ord_category) :=
functor_to_prod_cat (ord_functor_id C) (ord_functor_id C).
Section ProjectionsFunctors.
Context (C D : ord_category).
Program Definition left_proj_functor : ord_functor (prod_cat C D) C :=
mkOrdFunctor nfst (fun _ _ => nfst) _ _ _.
Solve All Obligations with cbv ; intuition.
Program Definition right_proj_functor : ord_functor (prod_cat C D) D :=
mkOrdFunctor nsnd (fun _ _ => nsnd) _ _ _.
Solve All Obligations with cbv ; intuition.
End ProjectionsFunctors.
Section ProductFunctor.
Context {C1 C2 D1 D2 : ord_category} (F1 : ord_functor C1 D1) (F2 : ord_functor C2 D2).
Program Definition prod_functor
: ord_functor (prod_cat C1 C2) (prod_cat D1 D2) :=
mkOrdFunctor (fun A => ⟨F1 (nfst A), F2 (nsnd A)⟩)
(fun _ _ f => ⟨ofmap F1 (nfst f), ofmap F2 (nsnd f)⟩)
_ _ _.
Next Obligation. cbv ; intuition ; apply ofmap_proper=> //. Qed.
Next Obligation. rewrite 2!ord_functor_law1 //. Qed.
Next Obligation. rewrite 2!ord_functor_law2 //. Qed.
End ProductFunctor.
(** Should I implement lax natural transformations ? *)
(* (*********************************************************) *)
(* (** Natural transformations, id, comp, whiskering **) *)
(* (*********************************************************) *)
(* Section NaturalTrans. *)
(* Context {C D : ord_category} (F G : ord_functor C D). *)
(* Cumulative Record natTrans := *)
(* mkNatTrans *)
(* { nt_map :> forall {A}, D⦅F A;G A⦆ *)
(* ; nt_natural : forall {A B} (f : C⦅A ; B⦆), *)
(* nt_map ∙ fmap F f ∼ fmap G f ∙ nt_map *)
(* }. *)
(* End NaturalTrans. *)
(* Section NaturalTransformationId. *)
(* Context {C D : category} (F : functor C D). *)
(* Program Definition natTrans_id : natTrans F F := *)
(* mkNatTrans _ _ (fun=> Id _) _. *)
(* Next Obligation. rewrite cat_law1 cat_law2 ; reflexivity. Qed. *)
(* End NaturalTransformationId. *)
(* Section NaturalTransformationComp. *)
(* Context {C D : category} {F G H : functor C D} *)
(* (phi : natTrans F G) (psi : natTrans G H). *)
(* Program Definition natTrans_comp : natTrans F H := *)
(* mkNatTrans _ _ (fun A => psi A ∙ phi A) _. *)
(* Next Obligation. *)
(* rewrite -cat_law3 nt_natural cat_law3 nt_natural !cat_law3. *)
(* reflexivity. *)
(* Qed. *)
(* End NaturalTransformationComp. *)
(* Section NaturalTransformationRightWhiskering. *)
(* Context {C D E: category} {F G : functor C D} (H : functor D E) *)
(* (phi : natTrans F G). *)
(* Program Definition natTrans_whisker_right : natTrans (functor_comp F H) (functor_comp G H) := *)
(* mkNatTrans _ _ (fun A => fmap H (phi A)) _. *)
(* Next Obligation. *)
(* rewrite -!functor_law2 !nt_natural ; reflexivity. *)
(* Qed. *)
(* End NaturalTransformationRightWhiskering. *)
(* Section NaturalTransformationLeftWhiskering. *)
(* Context {C D E: category} {F G : functor D E} *)
(* (phi : natTrans F G) (H : functor C D). *)
(* Program Definition natTrans_whisker_left : natTrans (functor_comp H F) (functor_comp H G) := *)
(* mkNatTrans _ _ (fun A => phi (H A)) _. *)
(* Next Obligation. rewrite nt_natural. reflexivity. Qed. *)
(* End NaturalTransformationLeftWhiskering. *)
(*********************************************************)
(** Natural isomorphisms, id, comp, whiskering **)
(** unitality and associativity laws for functors **)
(*********************************************************)
Section NaturalIso.
Context {C D : ord_category} (F G : ord_functor C D).
Cumulative Record natIso :=
mkNatIso
{ ni_map :> forall {A}, D⦅F A;G A⦆
; ni_inv : forall {A}, D⦅G A;F A⦆
; ni_natural : forall {A B} (f : C⦅A ; B⦆),
ni_map ∙ ofmap F f = ofmap G f ∙ ni_map
; ni_rightinv : forall {A}, ni_map ∙ ni_inv = Id (G A)
; ni_leftinv : forall {A}, ni_inv ∙ ni_map = Id (F A)
}.
Lemma natIso_inv_natural (phi:natIso) {A B} (f : C⦅A ; B⦆) :
ni_inv phi ∙ ofmap G f = ofmap F f ∙ ni_inv phi.
Proof.
rewrite -[in RHS](ord_cat_law1 _ _ _ (ofmap _ _))
-(ni_leftinv phi) -(ord_cat_law3 _ _ _ _ _ _ _ (ni_inv phi))
ni_natural -!ord_cat_law3 ni_rightinv ord_cat_law2 //.
Qed.
End NaturalIso.
Arguments ni_inv {_ _ _ _} _ _.
Section NaturalIsoSym.
Context {C D : ord_category} {F G : ord_functor C D}.
Program Definition natIso_sym (phi : natIso F G) : natIso G F :=
mkNatIso _ _ (ni_inv phi) phi _ _ _.
Next Obligation. apply natIso_inv_natural. Qed.
Next Obligation. apply ni_leftinv. Qed.
Next Obligation. apply ni_rightinv. Qed.
End NaturalIsoSym.
(* Section NaturalIsoToNaturalTrans. *)
(* Context {C D : category}. *)
(* Definition iso_to_natTrans {F G : functor C D } (phi : natIso F G) *)
(* : natTrans F G := *)
(* mkNatTrans _ _ phi (@ni_natural _ _ _ _ phi). *)
(* Definition iso_to_natTrans_inv {F G : functor C D } (phi : natIso F G) *)
(* : natTrans G F := *)
(* iso_to_natTrans (natIso_sym phi). *)
(* End NaturalIsoToNaturalTrans. *)
Section IdToNaturalIso.
Context {C D : ord_category} (F: ord_functor C D).
Program Definition natIso_id : natIso F F :=
mkNatIso F F (fun=> Id _) (fun=> Id _) _ _ _.
Next Obligation. rewrite ord_cat_law1 ord_cat_law2 //. Qed.
Next Obligation. rewrite ord_cat_law1 //. Qed.
Next Obligation. rewrite ord_cat_law1 //. Qed.
End IdToNaturalIso.
Section NaturalIsoComp.
Context {C D : ord_category} {F G H : ord_functor C D}
(phi : natIso F G) (psi : natIso G H).
Program Definition natIso_comp : natIso F H :=
mkNatIso _ _ (fun A => psi A ∙ phi A)
(fun A => ni_inv phi A ∙ ni_inv psi A) _ _ _.
Next Obligation.
rewrite -ord_cat_law3 ni_natural ord_cat_law3 ni_natural !ord_cat_law3 //.
Qed.
Next Obligation.
rewrite ord_cat_law3 -(ord_cat_law3 _ _ _ _ _ _ _ (psi _)).
rewrite ni_rightinv ord_cat_law2 ni_rightinv //.
Qed.
Next Obligation.
rewrite -ord_cat_law3 (ord_cat_law3 _ _ _ _ _ (phi _)).
rewrite ni_leftinv ord_cat_law1 ni_leftinv //.
Qed.
End NaturalIsoComp.
Section NaturalIsoLeftWhiskering.
Context {C D E: ord_category} {F G : ord_functor D E}
(phi : natIso F G) (H : ord_functor C D).
Program Definition natIso_whisker_left : natIso (ord_functor_comp H F) (ord_functor_comp H G) :=
mkNatIso _ _ (fun A => phi (H A)) (fun A => ni_inv phi (H A)) _ _ _.
Next Obligation. rewrite ni_natural; reflexivity. Qed.
Next Obligation. rewrite ni_rightinv ; reflexivity. Qed.
Next Obligation. rewrite ni_leftinv ; reflexivity. Qed.
End NaturalIsoLeftWhiskering.
Section NaturalIsoRightWhiskering.
Context {C D E: ord_category} {F G : ord_functor C D} (H : ord_functor D E)
(phi : natIso F G).
Program Definition natIso_whisker_right : natIso (ord_functor_comp F H) (ord_functor_comp G H) :=
mkNatIso _ _ (fun A => ofmap H (phi A)) (fun A => ofmap H (ni_inv phi A)) _ _ _.
Next Obligation. rewrite -!ord_functor_law2 ni_natural //. Qed.
Next Obligation. rewrite -ord_functor_law2 ni_rightinv ord_functor_law1 //. Qed.
Next Obligation. rewrite -ord_functor_law2 ni_leftinv ord_functor_law1 //. Qed.
End NaturalIsoRightWhiskering.
Section FunctorCompId.
Context {C D : ord_category} (F : ord_functor C D).
Program Definition ord_functor_unit_left
: natIso (ord_functor_comp (ord_functor_id _) F) F
:= mkNatIso _ _ (fun=> Id _) (fun=> Id _) _ _ _.
Next Obligation. rewrite ord_cat_law1 ord_cat_law2 //. Qed.
Next Obligation. rewrite ord_cat_law1 //. Qed.
Next Obligation. rewrite ord_cat_law1 //. Qed.
Program Definition ord_functor_unit_right
: natIso (ord_functor_comp F (ord_functor_id _)) F
:= mkNatIso _ _ (fun=> Id _) (fun=> Id _) _ _ _.
Next Obligation. rewrite ord_cat_law1 ord_cat_law2 //. Qed.
Next Obligation. rewrite ord_cat_law1 //. Qed.
Next Obligation. rewrite ord_cat_law1 //. Qed.
End FunctorCompId.
Section FunctorCompAssoc.
Context {C1 C2 C3 C4} (F12 : ord_functor C1 C2) (F23 : ord_functor C2 C3) (F34 : ord_functor C3 C4).
Program Definition ord_functor_assoc
: natIso (ord_functor_comp F12 (ord_functor_comp F23 F34))
(ord_functor_comp (ord_functor_comp F12 F23) F34)
:= mkNatIso _ _ (fun=> Id _) (fun=> Id _) _ _ _.
Next Obligation. rewrite ord_cat_law1 ord_cat_law2 //. Qed.
Next Obligation. rewrite ord_cat_law1 //. Qed.
Next Obligation. rewrite ord_cat_law1 //. Qed.
End FunctorCompAssoc.
(*********************************************************)
(** Monad relative to a functor, morphisms **)
(** underlying functor, monads as relative monads **)
(*********************************************************)
Section RelativeMonad.
Context {C D : ord_category} {J : ord_functor C D}.
Cumulative Record ord_relativeMonad :=
mkOrdRelativeMonad
{ ord_relmonObj :> C -> D
; ord_relmon_unit : forall A, D⦅J A; ord_relmonObj A⦆
; ord_relmon_bind : forall {A B}, D⦅J A; ord_relmonObj B⦆ -> D⦅ord_relmonObj A; ord_relmonObj B⦆
; ord_relmon_bind_proper : forall A B,
Proper (@ord_cat_le D (J A) (ord_relmonObj B) ==> ord_cat_le D) ord_relmon_bind
; ord_relmon_law1 : forall A, ord_relmon_bind (ord_relmon_unit A) = Id _
; ord_relmon_law2 : forall A B (f : D⦅J A; ord_relmonObj B⦆),
ord_relmon_bind f ∙ ord_relmon_unit A = f
; ord_relmon_law3 : forall A B C (f : D⦅J B; ord_relmonObj C⦆) (g:D⦅J A; ord_relmonObj B⦆),
ord_relmon_bind (ord_relmon_bind f ∙ g) = ord_relmon_bind f ∙ ord_relmon_bind g
}.
Global Existing Instance ord_relmon_bind_proper.
End RelativeMonad.
Arguments ord_relativeMonad {_ _} J.
Section RelativeLaxMonadMorphism.
Context {C D1 D2 : ord_category} {J1 : ord_functor C D1} (J12 : ord_functor D1 D2) {J2 : ord_functor C D2}
(phi : natIso J2 (ord_functor_comp J1 J12)) (psi := ni_inv phi)
(M1 : ord_relativeMonad J1) (M2: ord_relativeMonad J2).
Notation η := ord_relmon_unit.
Notation rbind := ord_relmon_bind.
Cumulative Record relativeMonadMorphism :=
mkRelMonMorph
{ rmm_map :> forall {A}, D2⦅J12 (M1 A); M2 A⦆
; rmm_law1 : forall A, rmm_map ∙ ofmap J12 (η M1 A) = η M2 A ∙ psi _
; rmm_law2 : forall A B (f : D1⦅J1 A; M1 B⦆),
rmm_map ∙ ofmap J12 (rbind M1 f) =
rbind M2 (rmm_map ∙ ofmap J12 f ∙ phi _) ∙ rmm_map
}.
Cumulative Record relativeLaxMonadMorphism :=
mkRelLaxMonMorph
{ rlmm_map :> forall {A}, D2⦅J12 (M1 A); M2 A⦆
; rlmm_law1 : forall A, rlmm_map ∙ ofmap J12 (η M1 A) ⪷ η M2 A ∙ psi _
; rlmm_law2 : forall A B (f : D1⦅J1 A; M1 B⦆),
rlmm_map ∙ ofmap J12 (rbind M1 f) ⪷
rbind M2 (rlmm_map ∙ ofmap J12 f ∙ phi _) ∙ rlmm_map
}.
Program Definition relativeMonadMorphism_to_lax
(θ : relativeMonadMorphism) : relativeLaxMonadMorphism
:= mkRelLaxMonMorph θ _ _.
Next Obligation. rewrite rmm_law1; reflexivity. Qed.
Next Obligation. rewrite rmm_law2; reflexivity. Qed.
Coercion relativeMonadMorphism_to_lax : relativeMonadMorphism >-> relativeLaxMonadMorphism.
End RelativeLaxMonadMorphism.
Section RelativeMonadToFunctor.
Context {C D:ord_category} {J:ord_functor C D} (M : ord_relativeMonad J).
Program Definition rmon_to_ord_functor : ord_functor C D :=
mkOrdFunctor M (fun A B f => ord_relmon_bind M (ord_relmon_unit M _ ∙ ofmap J f)) _ _ _.
Next Obligation.
cbv ; intuition.
apply ord_relmon_bind_proper, Comp_proper; [reflexivity| apply ofmap_proper; assumption].
Qed.
Next Obligation. rewrite ord_functor_law1 ord_cat_law2 ord_relmon_law1 //. Qed.
Next Obligation.
rewrite ord_functor_law2 ord_cat_law3
-ord_relmon_law3 ord_cat_law3 ord_relmon_law2 //.
Qed.
End RelativeMonadToFunctor.
(* Section RmonadUnit. *)
(* Context {I C:ord_category} {J:ord_functor I C} *)
(* (M0 : ord_relativeMonad J) (M := rmon_to_ord_functor M0). *)
(* Program Definition rmon_unit : natTrans J M := *)
(* mkNatTrans _ _ (relmon_unit M0) _. *)
(* Next Obligation. rewrite (relmon_law2 M0) ; reflexivity. Qed. *)
(* End RmonadUnit. *)
(* Section RMonadAsMonad. *)
(* Context {C:category} (M0 : relativeMonad (functor_id C)) (M := rmon_to_functor M0). *)
(* Program Definition rmon_id_mult : natTrans (functor_comp M M) M := *)
(* mkNatTrans _ _ (fun=> relmon_bind M0 (Id _)) _. *)
(* Next Obligation. *)
(* rewrite -!relmon_law3 cat_law3 (relmon_law2 M0) cat_law1 cat_law2. *)
(* reflexivity. *)
(* Qed. *)
(* Notation η := (@rmon_unit C C (functor_id C) _ _). *)
(* Notation μ := (rmon_id_mult _). *)
(* Lemma rmon_id_law1 {A} : μ ∙ (fmap M η) ∼ Id (M A). *)
(* Proof. cbv. rewrite -relmon_law3 cat_law3 (relmon_law2 M0) cat_law1 relmon_law1. reflexivity. Qed. *)
(* Lemma rmon_id_law2 {A} : μ ∙ η ∼ Id (M A). *)
(* Proof. cbv. rewrite (relmon_law2 M0). reflexivity. Qed. *)
(* Lemma rmon_id_law3 {A} : μ ∙ μ ∼ μ ∙ fmap M (rmon_id_mult A). *)
(* Proof. *)
(* cbv. rewrite -!relmon_law3 !cat_law3 (relmon_law2 M0) cat_law2 cat_law1. *)
(* reflexivity. *)
(* Qed. *)
(* End RMonadAsMonad. *)
(* transport a J1-relative monad into a J2-relative monad along a natural isomorphism *)
Section RelativeMonadIso.
Context {I C} {J1 J2 : ord_functor I C} (M : ord_relativeMonad J1)
(phi : natIso J1 J2).
Program Definition rmon_transp_natIso : ord_relativeMonad J2 :=
mkOrdRelativeMonad M (fun A => ord_relmon_unit M A ∙ ni_inv phi A)
(fun A B f => ord_relmon_bind M (f ∙ phi A))
_ _ _ _.
Next Obligation.
cbv ; intuition; apply: ord_relmon_bind_proper; apply: Comp_proper=> //; reflexivity. Qed.
Next Obligation.
rewrite -ord_cat_law3 ni_leftinv ord_cat_law2 ord_relmon_law1 //.
Qed.
Next Obligation.
rewrite ord_cat_law3 ord_relmon_law2 -ord_cat_law3 ni_rightinv ord_cat_law2 //.
Qed.
Next Obligation.
rewrite -ord_cat_law3 ord_relmon_law3 //.
Qed.
(* Surprisingly, we never use naturality... *)
End RelativeMonadIso.
(* Given functors
J1 : I1 -> C1
J2 : I2 -> C2,
J1-relative monad M1 and
J2-relative monad M2
builds a J1×J2-relative monad I1 × I2 -> C1 × C2
*)
Section ProductRelativeMonad.
Context {I1 I2 C1 C2} {J1 : ord_functor I1 C1} {J2 : ord_functor I2 C2}
(M1 : ord_relativeMonad J1) (M2 : ord_relativeMonad J2).
Program Definition product_rmon : ord_relativeMonad (prod_functor J1 J2) :=
mkOrdRelativeMonad (fun A => ⟨M1 (nfst A), M2 (nsnd A)⟩)
(fun A => ⟨ord_relmon_unit M1 (nfst A), ord_relmon_unit M2 (nsnd A)⟩)
(fun _ _ f => ⟨ord_relmon_bind M1 (nfst f), ord_relmon_bind M2 (nsnd f)⟩) _ _ _ _.
Next Obligation.
cbv ; intuition; apply: ord_relmon_bind_proper=> //.
Qed.
Next Obligation. intuition; rewrite !ord_relmon_law1 //. Qed.
Next Obligation. intuition; rewrite !ord_relmon_law2 //. Qed.
Next Obligation. intuition; rewrite !ord_relmon_law3 //. Qed.
End ProductRelativeMonad.
(*********************************************************)
(** Precomposition is functorial on relative monads **)
(*********************************************************)
Section RelativeMonadPrecomposition.
Context {I I'} (J : ord_functor I I').
Section OnObjects.
Context {C : ord_category} {JC : ord_functor I' C} (J' := ord_functor_comp J JC)
(M : ord_relativeMonad JC).
Program Definition relativeMonad_precomposition
: ord_relativeMonad J' :=
mkOrdRelativeMonad (fun A => M (J A))
(fun A => ord_relmon_unit M (J A))
(fun A B f => ord_relmon_bind M f)
_ _ _ _.
Next Obligation. cbv ; intuition. apply: ord_relmon_bind_proper=> //. Qed.
Next Obligation. rewrite !ord_relmon_law1 => //. Qed.
Next Obligation. rewrite !ord_relmon_law2 => //. Qed.
Next Obligation. rewrite !ord_relmon_law3 => //. Qed.
End OnObjects.
Local Notation "J*" := relativeMonad_precomposition.
Section OnMorphism.
Context {C1 C2 : ord_category} {JC1 : ord_functor I' C1} {JC2 : ord_functor I' C2}.
Context {M1 : ord_relativeMonad JC1} {M2 : ord_relativeMonad JC2}
{JC12 : ord_functor C1 C2} (phi : natIso _ _)
(θ : relativeMonadMorphism JC12 phi M1 M2)
(θl : relativeLaxMonadMorphism JC12 phi M1 M2).
Program Definition relativeMonad_precomposition_morph
: relativeMonadMorphism JC12
(natIso_comp (natIso_whisker_left phi J)
(ord_functor_assoc _ _ _))
(J* M1) (J* M2) :=
mkRelMonMorph _ _ _ _ (fun A => θ (J A)) _ _.
Next Obligation. rewrite ord_cat_law2 ; apply: rmm_law1. Qed.
Next Obligation. rewrite ord_cat_law1 ; apply: rmm_law2. Qed.
Program Definition relativeMonad_precomposition_lax_morph
: relativeLaxMonadMorphism JC12
(natIso_comp (natIso_whisker_left phi J)
(ord_functor_assoc _ _ _))
(J* M1) (J* M2) :=
mkRelLaxMonMorph _ _ _ _ (fun A => θl (J A)) _ _.
Next Obligation. rewrite ord_cat_law2 ; apply: rlmm_law1. Qed.
Next Obligation. rewrite ord_cat_law1 ; apply: rlmm_law2. Qed.
End OnMorphism.
(* TODO : show the functorial laws *)
End RelativeMonadPrecomposition.
(*********************************************************)
(** Postcomposition by a *full and faithful* functor is **)
(** functorial on relative monads **)
(*********************************************************)
Section FullyFaithfulFunctor.
Context {C D : ord_category} (F : ord_functor C D).
Record ff_struct :=
{ ff_invmap :> forall {X Y}, D⦅F X;F Y⦆ -> C⦅X;Y⦆
; ff_inv_proper : forall {X Y}, Proper (ord_cat_le D ==> ord_cat_le C) (@ff_invmap X Y)
; ff_section : forall {X Y} (f : D⦅F X;F Y⦆), ofmap F (ff_invmap f) = f
; ff_retraction : forall {X Y} (f : C⦅X;Y⦆), ff_invmap (ofmap F f) = f
}.
Global Existing Instance ff_inv_proper.
Lemma invert_comp (Fff : ff_struct) {X Y Z}
(f:D⦅F Y;F Z⦆) (g:D⦅F X;F Y⦆): Fff _ _ (f ∙ g) = Fff _ _ f ∙ Fff _ _ g.
Proof.
rewrite -{1}(ff_section Fff f) -{1}(ff_section Fff g) -ord_functor_law2 ff_retraction ; reflexivity.
Qed.
End FullyFaithfulFunctor.
Section RelativeMonadPostcomposition.
Context {I C D} {J: ord_functor I C} (M:ord_relativeMonad J)
(F : ord_functor C D) (Fff : ff_struct F).
Let FJ := ord_functor_comp J F.
Program Definition relativeMonad_postcomposition : ord_relativeMonad FJ :=
mkOrdRelativeMonad (fun A => F (M A))
(fun A => ofmap F (ord_relmon_unit M A))
(fun A B f => ofmap F (ord_relmon_bind M (Fff _ _ f)))
_ _ _ _.
Next Obligation. cbv ; intuition; apply: ofmap_proper; apply: ord_relmon_bind_proper; apply: ff_inv_proper=> //. Qed.
Next Obligation.
rewrite ff_retraction ord_relmon_law1 ord_functor_law1 //.
Qed.
Next Obligation.
rewrite -ord_functor_law2 ord_relmon_law2 ff_section //.
Qed.
Next Obligation.
rewrite invert_comp ff_retraction ord_relmon_law3 ord_functor_law2 //.
Qed.
End RelativeMonadPostcomposition.
(* From Equations Require Import Equations. *)
(* Section IdNatIso. *)
(* Import EqNotations. *)
(* Lemma rew_comp (C : ord_category) X Y Y' Z (f : C⦅X;Y⦆) (g : C⦅Y;Z⦆) (H : Y = Y') : *)
(* g ∙ f = rew [fun y=> C⦅y;_⦆] H in g ∙ rew H in f. *)
(* Proof. dependent elimination H=> //. Qed. *)
(* Lemma rew_target (C : ord_category) X Y Z Z' (f : C⦅X;Y⦆) (g : C⦅Y;Z⦆) (H : Z = Z') : *)
(* rew H in g ∙ f = rew H in (g ∙ f). *)
(* Proof. dependent elimination H=> //. Qed. *)
(* Context {I C D} {JC: ord_functor I C} {JD: ord_functor I D} *)
(* (F : ord_functor C D) *)
(* (JCF := ord_functor_comp JC F) *)
(* (Hobj : forall x: I, JD x = JCF x) *)
(* (Hmap : forall x y (f : I⦅x;y⦆), *)
(* rew [fun x' => D⦅x'; _⦆](Hobj x) in *)
(* rew [fun y' => D⦅_; y'⦆] (Hobj y) in *)
(* ofmap JD f = ofmap JCF f). *)
(* Goal natIso JD (ord_functor_comp JC F). *)
(* unshelve econstructor. *)
(* move=> A ; rewrite -(Hobj A); apply Id. *)
(* move=> A ; rewrite -(Hobj A); apply Id. *)
(* move=> A B f /=. *)
(* rewrite [ofmap _ (ofmap _ _)]/(ofmap JCF f) -Hmap. *)
(* set H1 := Hobj A. *)
(* set H2 := Hobj B. *)
(* move: H1 H2 => H2 H1. *)
(* rewrite -rew_comp rew_target ord_cat_law2 ord_cat_law1 //. *)
(* move=> ? /=. *)
(* set H := (Hobj _). *)
(* move: H => H. *)
(* (* Rem.: This is totally getting out of hand !!!! *) *)
(* End IdNatIso. *)
Section RelativeMonadLifting.
Section LiftingDatum.
Context {I C D} {JC: ord_functor I C} {JD: ord_functor I D}
(F : ord_functor C D)
(JCF := ord_functor_comp JC F)
(ϕ : natIso JD JCF)
(MC:ord_relativeMonad JC)
(MD:ord_relativeMonad JD).
Let uMC := rmon_to_ord_functor MC.
Let uMCF := ord_functor_comp uMC F.
Let uMD := rmon_to_ord_functor MD.
Definition lifts_object := natIso uMD uMCF.
Definition lifts_ret (ψ : lifts_object):=
forall (x:I), ofmap F (ord_relmon_unit MC x) ∙ ϕ _ = ψ _ ∙ ord_relmon_unit MD x.
Definition lifts_bind (ψ : lifts_object):=
forall (x y:I) (f: C⦅JC x; MC y⦆),
ni_inv ψ _ ∙ ofmap F (ord_relmon_bind MC f) ∙ ψ _ =
ord_relmon_bind MD (ni_inv ψ _ ∙ ofmap F f ∙ ϕ _).
End LiftingDatum.
Arguments lifts_ret {_ _ _ _ _ _} _ { _ _} _.
Arguments lifts_bind {_ _ _ _ _ _} _ {_ _} _.
Section LiftingOf.
Context {I C D} (JC: ord_functor I C) {JD: ord_functor I D}
(F : ord_functor C D)
(JCF := ord_functor_comp JC F)
(ϕ : natIso JD JCF)
(MD:ord_relativeMonad JD).
Record lifting_of :=
mkLiftingOf {
lifting_carrier :> ord_relativeMonad JC ;
lifting_obj : lifts_object F lifting_carrier MD;
lifting_ret : lifts_ret ϕ lifting_obj ;
lifting_bind : lifts_bind ϕ lifting_obj ;
}.
End LiftingOf.
End RelativeMonadLifting.