forked from eriklindernoren/Action-Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
174 lines (150 loc) · 6.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import sys
import numpy as np
import itertools
from models import *
from dataset import *
from torch.utils.data import DataLoader
from torch.autograd import Variable
import argparse
import time
import datetime
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_path", type=str, default="data/UCF-101-frames", help="Path to UCF-101 dataset")
parser.add_argument("--split_path", type=str, default="data/ucfTrainTestlist", help="Path to train/test split")
parser.add_argument("--split_number", type=int, default=1, help="train/test split number. One of {1, 2, 3}")
parser.add_argument("--num_epochs", type=int, default=100, help="Number of training epochs")
parser.add_argument("--batch_size", type=int, default=16, help="Size of each training batch")
parser.add_argument("--sequence_length", type=int, default=40, help="Number of frames in each sequence")
parser.add_argument("--img_dim", type=int, default=224, help="Height / width dimension")
parser.add_argument("--channels", type=int, default=3, help="Number of image channels")
parser.add_argument("--latent_dim", type=int, default=512, help="Dimensionality of the latent representation")
parser.add_argument("--checkpoint_model", type=str, default="", help="Optional path to checkpoint model")
parser.add_argument(
"--checkpoint_interval", type=int, default=5, help="Interval between saving model checkpoints"
)
opt = parser.parse_args()
print(opt)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_shape = (opt.channels, opt.img_dim, opt.img_dim)
# Define training set
train_dataset = Dataset(
dataset_path=opt.dataset_path,
split_path=opt.split_path,
split_number=opt.split_number,
input_shape=image_shape,
sequence_length=opt.sequence_length,
training=True,
)
train_dataloader = DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=4)
# Define test set
test_dataset = Dataset(
dataset_path=opt.dataset_path,
split_path=opt.split_path,
split_number=opt.split_number,
input_shape=image_shape,
sequence_length=opt.sequence_length,
training=False,
)
test_dataloader = DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=4)
# Classification criterion
cls_criterion = nn.CrossEntropyLoss().to(device)
# Define network
model = ConvLSTM(
num_classes=train_dataset.num_classes,
latent_dim=opt.latent_dim,
lstm_layers=1,
hidden_dim=1024,
bidirectional=True,
attention=True,
)
model = model.to(device)
# Add weights from checkpoint model if specified
if opt.checkpoint_model:
model.load_state_dict(torch.load(opt.checkpoint_model))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
def test_model(epoch):
""" Evaluate the model on the test set """
print("")
model.eval()
test_metrics = {"loss": [], "acc": []}
for batch_i, (X, y) in enumerate(test_dataloader):
image_sequences = Variable(X.to(device), requires_grad=False)
labels = Variable(y, requires_grad=False).to(device)
with torch.no_grad():
# Reset LSTM hidden state
model.lstm.reset_hidden_state()
# Get sequence predictions
predictions = model(image_sequences)
# Compute metrics
acc = 100 * (predictions.detach().argmax(1) == labels).cpu().numpy().mean()
loss = cls_criterion(predictions, labels).item()
# Keep track of loss and accuracy
test_metrics["loss"].append(loss)
test_metrics["acc"].append(acc)
# Log test performance
sys.stdout.write(
"\rTesting -- [Batch %d/%d] [Loss: %f (%f), Acc: %.2f%% (%.2f%%)]"
% (
batch_i,
len(test_dataloader),
loss,
np.mean(test_metrics["loss"]),
acc,
np.mean(test_metrics["acc"]),
)
)
model.train()
print("")
for epoch in range(opt.num_epochs):
epoch_metrics = {"loss": [], "acc": []}
prev_time = time.time()
print(f"--- Epoch {epoch} ---")
for batch_i, (X, y) in enumerate(train_dataloader):
if X.size(0) == 1:
continue
image_sequences = Variable(X.to(device), requires_grad=True)
labels = Variable(y.to(device), requires_grad=False)
optimizer.zero_grad()
# Reset LSTM hidden state
model.lstm.reset_hidden_state()
# Get sequence predictions
predictions = model(image_sequences)
# Compute metrics
loss = cls_criterion(predictions, labels)
acc = 100 * (predictions.detach().argmax(1) == labels).cpu().numpy().mean()
loss.backward()
optimizer.step()
# Keep track of epoch metrics
epoch_metrics["loss"].append(loss.item())
epoch_metrics["acc"].append(acc)
# Determine approximate time left
batches_done = epoch * len(train_dataloader) + batch_i
batches_left = opt.num_epochs * len(train_dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [Loss: %f (%f), Acc: %.2f%% (%.2f%%)] ETA: %s"
% (
epoch,
opt.num_epochs,
batch_i,
len(train_dataloader),
loss.item(),
np.mean(epoch_metrics["loss"]),
acc,
np.mean(epoch_metrics["acc"]),
time_left,
)
)
# Empty cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Evaluate the model on the test set
test_model(epoch)
# Save model checkpoint
if epoch % opt.checkpoint_interval == 0:
os.makedirs("model_checkpoints", exist_ok=True)
torch.save(model.state_dict(), f"model_checkpoints/{model.__class__.__name__}_{epoch}.pth")