forked from geaxgx/depthai_blazepose
-
Notifications
You must be signed in to change notification settings - Fork 1
/
mediapipe_utils.py
670 lines (604 loc) · 25.9 KB
/
mediapipe_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
import cv2
import numpy as np
from collections import namedtuple
from math import ceil, sqrt, pi, floor, sin, cos, atan2, gcd
from collections import namedtuple
# To not display: RuntimeWarning: overflow encountered in exp
# in line: scores = 1 / (1 + np.exp(-scores))
np.seterr(over='ignore')
# Dictionary that maps from joint names to keypoint indices.
KEYPOINT_DICT = {
"nose": 0,
"left_eye_inner": 1,
"left_eye": 2,
"left_eye_outer": 3,
"right_eye_inner": 4,
"right_eye": 5,
"right_eye_outer": 6,
"left_ear": 7,
"right_ear": 8,
"mouth_left": 9,
"mouth_right": 10,
"left_shoulder": 11,
"right_shoulder": 12,
"left_elbow": 13,
"right_elbow": 14,
"left_wrist": 15,
"right_wrist": 16,
"left_pinky": 17,
"right_pinky": 18,
"left_index": 19,
"right_index": 20,
"left_thumb": 21,
"right_thumb": 22,
"left_hip": 23,
"right_hip": 24,
"left_knee": 25,
"right_knee": 26,
"left_ankle": 27,
"right_ankle": 28,
"left_heel": 29,
"right_heel": 30,
"left_foot_index": 31,
"right_foot_index": 32
}
class Body:
def __init__(self, pd_score=None, pd_box=None, pd_kps=None):
"""
Attributes:
pd_score : detection score
pd_box : detection box [x, y, w, h], normalized [0,1] in the squared image
pd_kps : detection keypoints coordinates [x, y], normalized [0,1] in the squared image
rect_x_center, rect_y_center : center coordinates of the rotated bounding rectangle, normalized [0,1] in the squared image
rect_w, rect_h : width and height of the rotated bounding rectangle, normalized in the squared image (may be > 1)
rotation : rotation angle of rotated bounding rectangle with y-axis in radian
rect_x_center_a, rect_y_center_a : center coordinates of the rotated bounding rectangle, in pixels in the squared image
rect_w, rect_h : width and height of the rotated bounding rectangle, in pixels in the squared image
rect_points : list of the 4 points coordinates of the rotated bounding rectangle, in pixels
expressed in the squared image during processing,
expressed in the original rectangular image when returned to the user
lm_score: global landmark score
norm_landmarks : 3D landmarks coordinates in the rotated bounding rectangle, normalized [0,1]
landmarks : 3D landmarks coordinates in the rotated bounding rectangle, in pixel in the original rectangular image
world_landmarks : 3D landmarks coordinates in meter with mid hips point being the origin.
The y value of landmarks_world coordinates is negative for landmarks
above the mid hips (like shoulders) and negative for landmarks below (like feet)
xyz: (optionally) 3D location in camera coordinate system of reference point (mid hips or mid shoulders)
xyz_ref: (optionally) name of the reference point ("mid_hips" or "mid_shoulders"),
xyz_zone: (optionally) 4 int array of zone (in the source image) on which is measured depth.
xyz_zone[0:2] is top-left zone corner in pixels, xyz_zone[2:4] is bottom-right zone corner
"""
self.pd_score = pd_score
self.pd_box = pd_box
self.pd_kps = pd_kps
def print(self):
attrs = vars(self)
print('\n'.join("%s: %s" % item for item in attrs.items()))
SSDAnchorOptions = namedtuple('SSDAnchorOptions',[
'num_layers',
'min_scale',
'max_scale',
'input_size_height',
'input_size_width',
'anchor_offset_x',
'anchor_offset_y',
'strides',
'aspect_ratios',
'reduce_boxes_in_lowest_layer',
'interpolated_scale_aspect_ratio',
'fixed_anchor_size'])
def calculate_scale(min_scale, max_scale, stride_index, num_strides):
if num_strides == 1:
return (min_scale + max_scale) / 2
else:
return min_scale + (max_scale - min_scale) * stride_index / (num_strides - 1)
def generate_anchors(options):
"""
option : SSDAnchorOptions
# https://github.com/google/mediapipe/blob/master/mediapipe/calculators/tflite/ssd_anchors_calculator.cc
"""
anchors = []
layer_id = 0
n_strides = len(options.strides)
while layer_id < n_strides:
anchor_height = []
anchor_width = []
aspect_ratios = []
scales = []
# For same strides, we merge the anchors in the same order.
last_same_stride_layer = layer_id
while last_same_stride_layer < n_strides and \
options.strides[last_same_stride_layer] == options.strides[layer_id]:
scale = calculate_scale(options.min_scale, options.max_scale, last_same_stride_layer, n_strides)
if last_same_stride_layer == 0 and options.reduce_boxes_in_lowest_layer:
# For first layer, it can be specified to use predefined anchors.
aspect_ratios += [1.0, 2.0, 0.5]
scales += [0.1, scale, scale]
else:
aspect_ratios += options.aspect_ratios
scales += [scale] * len(options.aspect_ratios)
if options.interpolated_scale_aspect_ratio > 0:
if last_same_stride_layer == n_strides -1:
scale_next = 1.0
else:
scale_next = calculate_scale(options.min_scale, options.max_scale, last_same_stride_layer+1, n_strides)
scales.append(sqrt(scale * scale_next))
aspect_ratios.append(options.interpolated_scale_aspect_ratio)
last_same_stride_layer += 1
for i,r in enumerate(aspect_ratios):
ratio_sqrts = sqrt(r)
anchor_height.append(scales[i] / ratio_sqrts)
anchor_width.append(scales[i] * ratio_sqrts)
stride = options.strides[layer_id]
feature_map_height = ceil(options.input_size_height / stride)
feature_map_width = ceil(options.input_size_width / stride)
for y in range(feature_map_height):
for x in range(feature_map_width):
for anchor_id in range(len(anchor_height)):
x_center = (x + options.anchor_offset_x) / feature_map_width
y_center = (y + options.anchor_offset_y) / feature_map_height
# new_anchor = Anchor(x_center=x_center, y_center=y_center)
if options.fixed_anchor_size:
new_anchor = [x_center, y_center, 1.0, 1.0]
# new_anchor.w = 1.0
# new_anchor.h = 1.0
else:
new_anchor = [x_center, y_center, anchor_width[anchor_id], anchor_height[anchor_id]]
# new_anchor.w = anchor_width[anchor_id]
# new_anchor.h = anchor_height[anchor_id]
anchors.append(new_anchor)
layer_id = last_same_stride_layer
return np.array(anchors)
def generate_blazepose_anchors():
# https://github.com/google/mediapipe/blob/master/mediapipe/modules/pose_detection/pose_detection_cpu.pbtxt
anchor_options = SSDAnchorOptions(
num_layers=5,
min_scale=0.1484375,
max_scale=0.75,
input_size_height=224,
input_size_width=224,
anchor_offset_x=0.5,
anchor_offset_y=0.5,
strides=[8, 16, 32, 32, 32],
aspect_ratios= [1.0],
reduce_boxes_in_lowest_layer=False,
interpolated_scale_aspect_ratio=1.0,
fixed_anchor_size=True)
return generate_anchors(anchor_options)
def decode_bboxes(score_thresh, scores, bboxes, anchors, best_only=False):
"""
wi, hi : NN input shape
https://github.com/google/mediapipe/blob/master/mediapipe/modules/pose_detection/pose_detection_cpu.pbtxt
# Decodes the detection tensors generated by the TensorFlow Lite model, based on
# the SSD anchors and the specification in the options, into a vector of
# detections. Each detection describes a detected object.
Version 0.8.3.1:
node {
calculator: "TensorsToDetectionsCalculator"
input_stream: "TENSORS:detection_tensors"
input_side_packet: "ANCHORS:anchors"
output_stream: "DETECTIONS:unfiltered_detections"
options: {
[mediapipe.TensorsToDetectionsCalculatorOptions.ext] {
num_classes: 1
num_boxes: 896
num_coords: 12
box_coord_offset: 0
keypoint_coord_offset: 4
num_keypoints: 4
num_values_per_keypoint: 2
sigmoid_score: true
score_clipping_thresh: 100.0
reverse_output_order: true
x_scale: 128.0
y_scale: 128.0
h_scale: 128.0
w_scale: 128.0
min_score_thresh: 0.5
}
}
Version 0.8.4:
[mediapipe.TensorsToDetectionsCalculatorOptions.ext] {
num_classes: 1
num_boxes: 2254
num_coords: 12
box_coord_offset: 0
keypoint_coord_offset: 4
num_keypoints: 4
num_values_per_keypoint: 2
sigmoid_score: true
score_clipping_thresh: 100.0
reverse_output_order: true
x_scale: 224.0
y_scale: 224.0
h_scale: 224.0
w_scale: 224.0
min_score_thresh: 0.5
}
# Bounding box in each pose detection is currently set to the bounding box of
# the detected face. However, 4 additional key points are available in each
# detection, which are used to further calculate a (rotated) bounding box that
# encloses the body region of interest. Among the 4 key points, the first two
# are for identifying the full-body region, and the second two for upper body
# only:
#
# Key point 0 - mid hip center
# Key point 1 - point that encodes size & rotation (for full body)
# Key point 2 - mid shoulder center
# Key point 3 - point that encodes size & rotation (for upper body)
#
scores: shape = [number of anchors 896]
bboxes: shape = [ number of anchors x 12], 12 = 4 (bounding box : (cx,cy,w,h) + 8 (4 palm keypoints)
"""
bodies = []
scores = 1 / (1 + np.exp(-scores))
if best_only:
best_id = np.argmax(scores)
if scores[best_id] < score_thresh: return bodies
det_scores = scores[best_id:best_id+1]
det_bboxes = bboxes[best_id:best_id+1]
det_anchors = anchors[best_id:best_id+1]
else:
detection_mask = scores > score_thresh
det_scores = scores[detection_mask]
if det_scores.size == 0: return bodies
det_bboxes = bboxes[detection_mask]
det_anchors = anchors[detection_mask]
scale = 224 # x_scale, y_scale, w_scale, h_scale
# cx, cy, w, h = bboxes[i,:4]
# cx = cx * anchor.w / wi + anchor.x_center
# cy = cy * anchor.h / hi + anchor.y_center
# lx = lx * anchor.w / wi + anchor.x_center
# ly = ly * anchor.h / hi + anchor.y_center
det_bboxes = det_bboxes* np.tile(det_anchors[:,2:4], 6) / scale + np.tile(det_anchors[:,0:2],6)
# w = w * anchor.w / wi (in the prvious line, we add anchor.x_center and anchor.y_center to w and h, we need to substract them now)
# h = h * anchor.h / hi
det_bboxes[:,2:4] = det_bboxes[:,2:4] - det_anchors[:,0:2]
# box = [cx - w*0.5, cy - h*0.5, w, h]
det_bboxes[:,0:2] = det_bboxes[:,0:2] - det_bboxes[:,3:4] * 0.5
for i in range(det_bboxes.shape[0]):
score = det_scores[i]
box = det_bboxes[i,0:4]
kps = []
for kp in range(4):
kps.append(det_bboxes[i,4+kp*2:6+kp*2])
bodies.append(Body(float(score), box, kps))
return bodies
def non_max_suppression(bodies, nms_thresh):
# cv2.dnn.NMSBoxes(boxes, scores, 0, nms_thresh) needs:
# boxes = [ [x, y, w, h], ...] with x, y, w, h of type int
# Currently, x, y, w, h are float between 0 and 1, so we arbitrarily multiply by 1000 and cast to int
# boxes = [r.box for r in bodies]
boxes = [ [int(x*1000) for x in r.pd_box] for r in bodies]
scores = [r.pd_score for r in bodies]
indices = cv2.dnn.NMSBoxes(boxes, scores, 0, nms_thresh)
return [bodies[i[0]] for i in indices]
def normalize_radians(angle):
return angle - 2 * pi * floor((angle + pi) / (2 * pi))
def rot_vec(vec, rotation):
vx, vy = vec
return [vx * cos(rotation) - vy * sin(rotation), vx * sin(rotation) + vy * cos(rotation)]
def detections_to_rect(body, kp_pair=[0,1]):
# https://github.com/google/mediapipe/blob/master/mediapipe/modules/pose_landmark/pose_detection_to_roi.pbtxt
# # Converts pose detection into a rectangle based on center and scale alignment
# # points. Pose detection contains four key points: first two for full-body pose
# # and two more for upper-body pose.
# node {
# calculator: "SwitchContainer"
# input_side_packet: "ENABLE:upper_body_only"
# input_stream: "DETECTION:detection"
# input_stream: "IMAGE_SIZE:image_size"
# output_stream: "NORM_RECT:raw_roi"
# options {
# [mediapipe.SwitchContainerOptions.ext] {
# contained_node: {
# calculator: "AlignmentPointsRectsCalculator"
# options: {
# [mediapipe.DetectionsToRectsCalculatorOptions.ext] {
# rotation_vector_start_keypoint_index: 0
# rotation_vector_end_keypoint_index: 1
# rotation_vector_target_angle_degrees: 90
# }
# }
# }
# contained_node: {
# calculator: "AlignmentPointsRectsCalculator"
# options: {
# [mediapipe.DetectionsToRectsCalculatorOptions.ext] {
# rotation_vector_start_keypoint_index: 2
# rotation_vector_end_keypoint_index: 3
# rotation_vector_target_angle_degrees: 90
# }
# }
# }
# }
# }
# }
target_angle = pi * 0.5 # 90 = pi/2
# AlignmentPointsRectsCalculator : https://github.com/google/mediapipe/blob/master/mediapipe/calculators/util/alignment_points_to_rects_calculator.cc
x_center, y_center = body.pd_kps[kp_pair[0]]
x_scale, y_scale = body.pd_kps[kp_pair[1]]
# Bounding box size as double distance from center to scale point.
box_size = sqrt((x_scale-x_center)**2 + (y_scale-y_center)**2) * 2
body.rect_w = box_size
body.rect_h = box_size
body.rect_x_center = x_center
body.rect_y_center = y_center
rotation = target_angle - atan2(-(y_scale - y_center), x_scale - x_center)
body.rotation = normalize_radians(rotation)
def rotated_rect_to_points(cx, cy, w, h, rotation):
b = cos(rotation) * 0.5
a = sin(rotation) * 0.5
points = []
p0x = cx - a*h - b*w
p0y = cy + b*h - a*w
p1x = cx + a*h - b*w
p1y = cy - b*h - a*w
p2x = int(2*cx - p0x)
p2y = int(2*cy - p0y)
p3x = int(2*cx - p1x)
p3y = int(2*cy - p1y)
p0x, p0y, p1x, p1y = int(p0x), int(p0y), int(p1x), int(p1y)
return [[p0x,p0y], [p1x,p1y], [p2x,p2y], [p3x,p3y]]
def rect_transformation(body, w, h, scale = 1.25):
"""
w, h : image input shape
"""
# https://github.com/google/mediapipe/blob/master/mediapipe/modules/pose_landmark/pose_detection_to_roi.pbtxt
# # Expands pose rect with marging used during training.
# node {
# calculator: "RectTransformationCalculator"
# input_stream: "NORM_RECT:raw_roi"
# input_stream: "IMAGE_SIZE:image_size"
# output_stream: "roi"
# options: {
# [mediapipe.RectTransformationCalculatorOptions.ext] {
# Version 0831:
# scale_x: 1.5
# scale_y: 1.5
# Version 084:
# scale_x: 1.25
# scale_y: 1.25
# square_long: true
# }
# }
# }
scale_x = scale
scale_y = scale
shift_x = 0
shift_y = 0
width = body.rect_w
height = body.rect_h
rotation = body.rotation
if rotation == 0:
body.rect_x_center_a = (body.rect_x_center + width * shift_x) * w
body.rect_y_center_a = (body.rect_y_center + height * shift_y) * h
else:
x_shift = (w * width * shift_x * cos(rotation) - h * height * shift_y * sin(rotation))
y_shift = (w * width * shift_x * sin(rotation) + h * height * shift_y * cos(rotation))
body.rect_x_center_a = body.rect_x_center*w + x_shift
body.rect_y_center_a = body.rect_y_center*h + y_shift
# square_long: true
long_side = max(width * w, height * h)
body.rect_w_a = long_side * scale_x
body.rect_h_a = long_side * scale_y
body.rect_points = rotated_rect_to_points(body.rect_x_center_a, body.rect_y_center_a, body.rect_w_a, body.rect_h_a, body.rotation)
def warp_rect_img(rect_points, img, w, h):
src = np.array(rect_points[1:], dtype=np.float32) # rect_points[0] is left bottom point !
dst = np.array([(0, 0), (w, 0), (w, h)], dtype=np.float32)
mat = cv2.getAffineTransform(src, dst)
return cv2.warpAffine(img, mat, (w, h))
def distance(a, b):
"""
a, b: 2 points in 3D (x,y,z)
"""
return np.linalg.norm(a-b)
def angle(a, b, c):
# https://stackoverflow.com/questions/35176451/python-code-to-calculate-angle-between-three-point-using-their-3d-coordinates
# a, b and c : points as np.array([x, y, z])
ba = a - b
bc = c - b
cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
angle = np.arccos(cosine_angle)
return np.degrees(angle)
#
def find_isp_scale_params(size, is_height=True):
"""
Find closest valid size close to 'size' and and the corresponding parameters to setIspScale()
This function is useful to work around a bug in depthai where ImageManip is scrambling images that have an invalid size
is_height : boolean that indicates if the value is the height or the width of the image
Returns: valid size, (numerator, denominator)
"""
# We want size >= 288
if size < 288:
size = 288
# We are looking for the list on integers that are divisible by 16 and
# that can be written like n/d where n <= 16 and d <= 63
if is_height:
reference = 1080
other = 1920
else:
reference = 1920
other = 1080
size_candidates = {}
for s in range(288,reference,16):
f = gcd(reference, s)
n = s//f
d = reference//f
if n <= 16 and d <= 63 and int(round(other * n / d) % 2 == 0):
size_candidates[s] = (n, d)
# What is the candidate size closer to 'size' ?
min_dist = -1
for s in size_candidates:
dist = abs(size - s)
if min_dist == -1:
min_dist = dist
candidate = s
else:
if dist > min_dist: break
candidate = s
min_dist = dist
return candidate, size_candidates[candidate]
#
# Filtering
#
class LandmarksSmoothingFilter:
'''
Adapted from: https://github.com/google/mediapipe/blob/master/mediapipe/calculators/util/landmarks_smoothing_calculator.cc
frequency, min_cutoff, beta, derivate_cutoff:
See class OneEuroFilter description.
min_allowed_object_scale:
If calculated object scale is less than given value smoothing will be
disabled and landmarks will be returned as is. Default=1e-6
disable_value_scaling:
Disable value scaling based on object size and use `1.0` instead.
If not disabled, value scale is calculated as inverse value of object
size. Object size is calculated as maximum side of rectangular bounding
box of the object in XY plane. Default=False
'''
def __init__(self,
frequency=30,
min_cutoff=1,
beta=0,
derivate_cutoff=1,
min_allowed_object_scale=1e-6,
disable_value_scaling=False
):
self.frequency = frequency
self.min_cutoff = min_cutoff
self.beta = beta
self.derivate_cutoff = derivate_cutoff
self.min_allowed_object_scale = min_allowed_object_scale
self.disable_value_scaling = disable_value_scaling
self.init = True
@staticmethod
def get_object_scale(landmarks):
# Estimate object scale to use its inverse value as velocity scale for
# RelativeVelocityFilter. If value will be too small (less than
# `options_.min_allowed_object_scale`) smoothing will be disabled and
# landmarks will be returned as is.
# Object scale is calculated as average between bounding box width and height
# with sides parallel to axis.
min_xy = np.min(landmarks[:,:2], axis=0)
max_xy = np.max(landmarks[:,:2], axis=0)
return np.mean(max_xy - min_xy)
def apply(self, landmarks, timestamp, object_scale=0):
# object_scale: in practice, we use the size of the rotated rectangle region.rect_w_a=region.rect_h_a
# Initialize filters
if self.init:
self.filters = OneEuroFilter(self.frequency, self.min_cutoff, self.beta, self.derivate_cutoff)
self.init = False
# Get value scale as inverse value of the object scale.
# If value is too small smoothing will be disabled and landmarks will be
# returned as is.
if self.disable_value_scaling:
value_scale = 1
else:
object_scale = object_scale if object_scale else self.get_object_scale(landmarks)
if object_scale < self.min_allowed_object_scale:
return landmarks
value_scale = 1 / object_scale
return self.filters.apply(landmarks, value_scale, timestamp)
def get_alpha(self, cutoff):
'''
te = 1.0 / self.frequency
tau = 1.0 / (2 * Math.PI * cutoff)
result = 1 / (1.0 + (tau / te))
'''
return 1.0 / (1.0 + (self.frequency / (2 * pi * cutoff)))
def reset(self):
self.init = True
class OneEuroFilter:
'''
Adapted from: https://github.com/google/mediapipe/blob/master/mediapipe/util/filtering/one_euro_filter.cc
Paper: https://cristal.univ-lille.fr/~casiez/1euro/
frequency:
Frequency of incoming frames defined in seconds. Used
only if can't be calculated from provided events (e.g.
on the very first frame). Default=30
min_cutoff:
Minimum cutoff frequency. Start by tuning this parameter while
keeping `beta=0` to reduce jittering to the desired level. 1Hz
(the default value) is a a good starting point.
beta:
Cutoff slope. After `min_cutoff` is configured, start
increasing `beta` value to reduce the lag introduced by the
`min_cutoff`. Find the desired balance between jittering and lag. Default=0
derivate_cutoff:
Cutoff frequency for derivate. It is set to 1Hz in the
original algorithm, but can be turned to further smooth the
speed (i.e. derivate) on the object. Default=1
'''
def __init__(self,
frequency=30,
min_cutoff=1,
beta=0,
derivate_cutoff=1,
):
self.frequency = frequency
self.min_cutoff = min_cutoff
self.beta = beta
self.derivate_cutoff = derivate_cutoff
self.x = LowPassFilter(self.get_alpha(min_cutoff))
self.dx = LowPassFilter(self.get_alpha(derivate_cutoff))
self.last_timestamp = 0
def get_alpha(self, cutoff):
'''
te = 1.0 / self.frequency
tau = 1.0 / (2 * Math.PI * cutoff)
result = 1 / (1.0 + (tau / te))
'''
return 1.0 / (1.0 + (self.frequency / (2 * pi * cutoff)))
def apply(self, value, value_scale, timestamp):
'''
Applies filter to the value.
timestamp in s associated with the value (for instance,
timestamp of the frame where you got value from).
'''
if self.last_timestamp >= timestamp:
# Results are unpreditable in this case, so nothing to do but return same value.
return value
# Update the sampling frequency based on timestamps.
if self.last_timestamp != 0 and timestamp != 0:
self.frequency = 1 / (timestamp - self.last_timestamp)
self.last_timestamp = timestamp
# Estimate the current variation per second.
if self.x.has_last_raw_value():
dvalue = (value - self.x.last_raw_value()) * value_scale * self.frequency
else:
dvalue = 0
edvalue = self.dx.apply_with_alpha(dvalue, self.get_alpha(self.derivate_cutoff))
# Use it to update the cutoff frequency
cutoff = self.min_cutoff + self.beta * np.abs(edvalue)
# filter the given value.
return self.x.apply_with_alpha(value, self.get_alpha(cutoff))
class LowPassFilter:
'''
Adapted from: https://github.com/google/mediapipe/blob/master/mediapipe/util/filtering/low_pass_filter.cc
Note that 'value' can be a numpy array
'''
def __init__(self, alpha=0.9):
self.alpha = alpha
self.initialized = False
def apply(self, value):
if self.initialized:
# Regular lowpass filter.
# result = alpha * value + (1 - alpha) * stored_value;
result = self.alpha * value + (1 - self.alpha) * self.stored_value
else:
result = value
self.initialized = True
self.raw_value = value
self.stored_value = result
return result
def apply_with_alpha(self, value, alpha):
self.alpha = alpha
return self.apply(value)
def has_last_raw_value(self):
return self.initialized
def last_raw_value(self):
return self.raw_value
def last_value(self):
return self.stored_value
def reset(self):
self.initialized = False