-
Notifications
You must be signed in to change notification settings - Fork 5
/
alpha-dis.c
1960 lines (1764 loc) · 80.5 KB
/
alpha-dis.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* alpha-dis.c -- Disassemble Alpha AXP instructions
Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
Contributed by Richard Henderson <[email protected]>,
patterned after the PPC opcode handling written by Ian Lance Taylor.
This file is part of GDB, GAS, and the GNU binutils.
GDB, GAS, and the GNU binutils are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version
2, or (at your option) any later version.
GDB, GAS, and the GNU binutils are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
#include <stdio.h>
#include "dis-asm.h"
/* The opcode table is an array of struct alpha_opcode. */
struct alpha_opcode
{
/* The opcode name. */
const char *name;
/* The opcode itself. Those bits which will be filled in with
operands are zeroes. */
unsigned opcode;
/* The opcode mask. This is used by the disassembler. This is a
mask containing ones indicating those bits which must match the
opcode field, and zeroes indicating those bits which need not
match (and are presumably filled in by operands). */
unsigned mask;
/* One bit flags for the opcode. These are primarily used to
indicate specific processors and environments support the
instructions. The defined values are listed below. */
unsigned flags;
/* An array of operand codes. Each code is an index into the
operand table. They appear in the order which the operands must
appear in assembly code, and are terminated by a zero. */
unsigned char operands[4];
};
/* The table itself is sorted by major opcode number, and is otherwise
in the order in which the disassembler should consider
instructions. */
extern const struct alpha_opcode alpha_opcodes[];
extern const unsigned alpha_num_opcodes;
/* Values defined for the flags field of a struct alpha_opcode. */
/* CPU Availability */
#define AXP_OPCODE_BASE 0x0001 /* Base architecture -- all cpus. */
#define AXP_OPCODE_EV4 0x0002 /* EV4 specific PALcode insns. */
#define AXP_OPCODE_EV5 0x0004 /* EV5 specific PALcode insns. */
#define AXP_OPCODE_EV6 0x0008 /* EV6 specific PALcode insns. */
#define AXP_OPCODE_BWX 0x0100 /* Byte/word extension (amask bit 0). */
#define AXP_OPCODE_CIX 0x0200 /* "Count" extension (amask bit 1). */
#define AXP_OPCODE_MAX 0x0400 /* Multimedia extension (amask bit 8). */
#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
/* A macro to extract the major opcode from an instruction. */
#define AXP_OP(i) (((i) >> 26) & 0x3F)
/* The total number of major opcodes. */
#define AXP_NOPS 0x40
/* The operands table is an array of struct alpha_operand. */
struct alpha_operand
{
/* The number of bits in the operand. */
unsigned int bits : 5;
/* How far the operand is left shifted in the instruction. */
unsigned int shift : 5;
/* The default relocation type for this operand. */
signed int default_reloc : 16;
/* One bit syntax flags. */
unsigned int flags : 16;
/* Insertion function. This is used by the assembler. To insert an
operand value into an instruction, check this field.
If it is NULL, execute
i |= (op & ((1 << o->bits) - 1)) << o->shift;
(i is the instruction which we are filling in, o is a pointer to
this structure, and op is the opcode value; this assumes twos
complement arithmetic).
If this field is not NULL, then simply call it with the
instruction and the operand value. It will return the new value
of the instruction. If the ERRMSG argument is not NULL, then if
the operand value is illegal, *ERRMSG will be set to a warning
string (the operand will be inserted in any case). If the
operand value is legal, *ERRMSG will be unchanged (most operands
can accept any value). */
unsigned (*insert) PARAMS ((unsigned instruction, int op,
const char **errmsg));
/* Extraction function. This is used by the disassembler. To
extract this operand type from an instruction, check this field.
If it is NULL, compute
op = ((i) >> o->shift) & ((1 << o->bits) - 1);
if ((o->flags & AXP_OPERAND_SIGNED) != 0
&& (op & (1 << (o->bits - 1))) != 0)
op -= 1 << o->bits;
(i is the instruction, o is a pointer to this structure, and op
is the result; this assumes twos complement arithmetic).
If this field is not NULL, then simply call it with the
instruction value. It will return the value of the operand. If
the INVALID argument is not NULL, *INVALID will be set to
non-zero if this operand type can not actually be extracted from
this operand (i.e., the instruction does not match). If the
operand is valid, *INVALID will not be changed. */
int (*extract) PARAMS ((unsigned instruction, int *invalid));
};
/* Elements in the table are retrieved by indexing with values from
the operands field of the alpha_opcodes table. */
extern const struct alpha_operand alpha_operands[];
extern const unsigned alpha_num_operands;
/* Values defined for the flags field of a struct alpha_operand. */
/* Mask for selecting the type for typecheck purposes */
#define AXP_OPERAND_TYPECHECK_MASK \
(AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR | \
AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED | \
AXP_OPERAND_UNSIGNED)
/* This operand does not actually exist in the assembler input. This
is used to support extended mnemonics, for which two operands fields
are identical. The assembler should call the insert function with
any op value. The disassembler should call the extract function,
ignore the return value, and check the value placed in the invalid
argument. */
#define AXP_OPERAND_FAKE 01
/* The operand should be wrapped in parentheses rather than separated
from the previous by a comma. This is used for the load and store
instructions which want their operands to look like "Ra,disp(Rb)". */
#define AXP_OPERAND_PARENS 02
/* Used in combination with PARENS, this supresses the supression of
the comma. This is used for "jmp Ra,(Rb),hint". */
#define AXP_OPERAND_COMMA 04
/* This operand names an integer register. */
#define AXP_OPERAND_IR 010
/* This operand names a floating point register. */
#define AXP_OPERAND_FPR 020
/* This operand is a relative branch displacement. The disassembler
prints these symbolically if possible. */
#define AXP_OPERAND_RELATIVE 040
/* This operand takes signed values. */
#define AXP_OPERAND_SIGNED 0100
/* This operand takes unsigned values. This exists primarily so that
a flags value of 0 can be treated as end-of-arguments. */
#define AXP_OPERAND_UNSIGNED 0200
/* Supress overflow detection on this field. This is used for hints. */
#define AXP_OPERAND_NOOVERFLOW 0400
/* Mask for optional argument default value. */
#define AXP_OPERAND_OPTIONAL_MASK 07000
/* This operand defaults to zero. This is used for jump hints. */
#define AXP_OPERAND_DEFAULT_ZERO 01000
/* This operand should default to the first (real) operand and is used
in conjunction with AXP_OPERAND_OPTIONAL. This allows
"and $0,3,$0" to be written as "and $0,3", etc. I don't like
it, but it's what DEC does. */
#define AXP_OPERAND_DEFAULT_FIRST 02000
/* Similarly, this operand should default to the second (real) operand.
This allows "negl $0" instead of "negl $0,$0". */
#define AXP_OPERAND_DEFAULT_SECOND 04000
/* Register common names */
#define AXP_REG_V0 0
#define AXP_REG_T0 1
#define AXP_REG_T1 2
#define AXP_REG_T2 3
#define AXP_REG_T3 4
#define AXP_REG_T4 5
#define AXP_REG_T5 6
#define AXP_REG_T6 7
#define AXP_REG_T7 8
#define AXP_REG_S0 9
#define AXP_REG_S1 10
#define AXP_REG_S2 11
#define AXP_REG_S3 12
#define AXP_REG_S4 13
#define AXP_REG_S5 14
#define AXP_REG_FP 15
#define AXP_REG_A0 16
#define AXP_REG_A1 17
#define AXP_REG_A2 18
#define AXP_REG_A3 19
#define AXP_REG_A4 20
#define AXP_REG_A5 21
#define AXP_REG_T8 22
#define AXP_REG_T9 23
#define AXP_REG_T10 24
#define AXP_REG_T11 25
#define AXP_REG_RA 26
#define AXP_REG_PV 27
#define AXP_REG_T12 27
#define AXP_REG_AT 28
#define AXP_REG_GP 29
#define AXP_REG_SP 30
#define AXP_REG_ZERO 31
#define bfd_mach_alpha_ev4 0x10
#define bfd_mach_alpha_ev5 0x20
#define bfd_mach_alpha_ev6 0x30
enum bfd_reloc_code_real {
BFD_RELOC_23_PCREL_S2,
BFD_RELOC_ALPHA_HINT
};
/* This file holds the Alpha AXP opcode table. The opcode table includes
almost all of the extended instruction mnemonics. This permits the
disassembler to use them, and simplifies the assembler logic, at the
cost of increasing the table size. The table is strictly constant
data, so the compiler should be able to put it in the text segment.
This file also holds the operand table. All knowledge about inserting
and extracting operands from instructions is kept in this file.
The information for the base instruction set was compiled from the
_Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
version 2.
The information for the post-ev5 architecture extensions BWX, CIX and
MAX came from version 3 of this same document, which is also available
on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
/literature/alphahb2.pdf
The information for the EV4 PALcode instructions was compiled from
_DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
revision dated June 1994.
The information for the EV5 PALcode instructions was compiled from
_Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
Order Number EC-QAEQB-TE, preliminary revision dated April 1995. */
/* Local insertion and extraction functions */
static unsigned insert_rba PARAMS((unsigned, int, const char **));
static unsigned insert_rca PARAMS((unsigned, int, const char **));
static unsigned insert_za PARAMS((unsigned, int, const char **));
static unsigned insert_zb PARAMS((unsigned, int, const char **));
static unsigned insert_zc PARAMS((unsigned, int, const char **));
static unsigned insert_bdisp PARAMS((unsigned, int, const char **));
static unsigned insert_jhint PARAMS((unsigned, int, const char **));
static unsigned insert_ev6hwjhint PARAMS((unsigned, int, const char **));
static int extract_rba PARAMS((unsigned, int *));
static int extract_rca PARAMS((unsigned, int *));
static int extract_za PARAMS((unsigned, int *));
static int extract_zb PARAMS((unsigned, int *));
static int extract_zc PARAMS((unsigned, int *));
static int extract_bdisp PARAMS((unsigned, int *));
static int extract_jhint PARAMS((unsigned, int *));
static int extract_ev6hwjhint PARAMS((unsigned, int *));
/* The operands table */
const struct alpha_operand alpha_operands[] =
{
/* The fields are bits, shift, insert, extract, flags */
/* The zero index is used to indicate end-of-list */
#define UNUSED 0
{ 0, 0, 0, 0, 0, 0 },
/* The plain integer register fields */
#define RA (UNUSED + 1)
{ 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
#define RB (RA + 1)
{ 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
#define RC (RB + 1)
{ 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
/* The plain fp register fields */
#define FA (RC + 1)
{ 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
#define FB (FA + 1)
{ 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
#define FC (FB + 1)
{ 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
/* The integer registers when they are ZERO */
#define ZA (FC + 1)
{ 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
#define ZB (ZA + 1)
{ 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
#define ZC (ZB + 1)
{ 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
/* The RB field when it needs parentheses */
#define PRB (ZC + 1)
{ 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
/* The RB field when it needs parentheses _and_ a preceding comma */
#define CPRB (PRB + 1)
{ 5, 16, 0,
AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
/* The RB field when it must be the same as the RA field */
#define RBA (CPRB + 1)
{ 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
/* The RC field when it must be the same as the RB field */
#define RCA (RBA + 1)
{ 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
/* The RC field when it can *default* to RA */
#define DRC1 (RCA + 1)
{ 5, 0, 0,
AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
/* The RC field when it can *default* to RB */
#define DRC2 (DRC1 + 1)
{ 5, 0, 0,
AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
/* The FC field when it can *default* to RA */
#define DFC1 (DRC2 + 1)
{ 5, 0, 0,
AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
/* The FC field when it can *default* to RB */
#define DFC2 (DFC1 + 1)
{ 5, 0, 0,
AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
/* The unsigned 8-bit literal of Operate format insns */
#define LIT (DFC2 + 1)
{ 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
/* The signed 16-bit displacement of Memory format insns. From here
we can't tell what relocation should be used, so don't use a default. */
#define MDISP (LIT + 1)
{ 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
/* The signed "23-bit" aligned displacement of Branch format insns */
#define BDISP (MDISP + 1)
{ 21, 0, BFD_RELOC_23_PCREL_S2,
AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
/* The 26-bit PALcode function */
#define PALFN (BDISP + 1)
{ 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
/* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
#define JMPHINT (PALFN + 1)
{ 14, 0, BFD_RELOC_ALPHA_HINT,
AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
insert_jhint, extract_jhint },
/* The optional hint to RET/JSR_COROUTINE */
#define RETHINT (JMPHINT + 1)
{ 14, 0, -RETHINT,
AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
/* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
#define EV4HWDISP (RETHINT + 1)
#define EV6HWDISP (EV4HWDISP)
{ 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
/* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
#define EV4HWINDEX (EV4HWDISP + 1)
{ 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
/* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
that occur in DEC PALcode. */
#define EV4EXTHWINDEX (EV4HWINDEX + 1)
{ 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
/* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
#define EV5HWDISP (EV4EXTHWINDEX + 1)
{ 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
/* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
#define EV5HWINDEX (EV5HWDISP + 1)
{ 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
/* The 16-bit combined index/scoreboard mask for the ev6
hw_m[ft]pr (pal19/pal1d) insns */
#define EV6HWINDEX (EV5HWINDEX + 1)
{ 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
/* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
#define EV6HWJMPHINT (EV6HWINDEX+ 1)
{ 8, 0, -EV6HWJMPHINT,
AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
insert_ev6hwjhint, extract_ev6hwjhint }
};
const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
/* The RB field when it is the same as the RA field in the same insn.
This operand is marked fake. The insertion function just copies
the RA field into the RB field, and the extraction function just
checks that the fields are the same. */
/*ARGSUSED*/
static unsigned
insert_rba(insn, value, errmsg)
unsigned insn;
int value ATTRIBUTE_UNUSED;
const char **errmsg ATTRIBUTE_UNUSED;
{
return insn | (((insn >> 21) & 0x1f) << 16);
}
static int
extract_rba(insn, invalid)
unsigned insn;
int *invalid;
{
if (invalid != (int *) NULL
&& ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
*invalid = 1;
return 0;
}
/* The same for the RC field */
/*ARGSUSED*/
static unsigned
insert_rca(insn, value, errmsg)
unsigned insn;
int value ATTRIBUTE_UNUSED;
const char **errmsg ATTRIBUTE_UNUSED;
{
return insn | ((insn >> 21) & 0x1f);
}
static int
extract_rca(insn, invalid)
unsigned insn;
int *invalid;
{
if (invalid != (int *) NULL
&& ((insn >> 21) & 0x1f) != (insn & 0x1f))
*invalid = 1;
return 0;
}
/* Fake arguments in which the registers must be set to ZERO */
/*ARGSUSED*/
static unsigned
insert_za(insn, value, errmsg)
unsigned insn;
int value ATTRIBUTE_UNUSED;
const char **errmsg ATTRIBUTE_UNUSED;
{
return insn | (31 << 21);
}
static int
extract_za(insn, invalid)
unsigned insn;
int *invalid;
{
if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
*invalid = 1;
return 0;
}
/*ARGSUSED*/
static unsigned
insert_zb(insn, value, errmsg)
unsigned insn;
int value ATTRIBUTE_UNUSED;
const char **errmsg ATTRIBUTE_UNUSED;
{
return insn | (31 << 16);
}
static int
extract_zb(insn, invalid)
unsigned insn;
int *invalid;
{
if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
*invalid = 1;
return 0;
}
/*ARGSUSED*/
static unsigned
insert_zc(insn, value, errmsg)
unsigned insn;
int value ATTRIBUTE_UNUSED;
const char **errmsg ATTRIBUTE_UNUSED;
{
return insn | 31;
}
static int
extract_zc(insn, invalid)
unsigned insn;
int *invalid;
{
if (invalid != (int *) NULL && (insn & 0x1f) != 31)
*invalid = 1;
return 0;
}
/* The displacement field of a Branch format insn. */
static unsigned
insert_bdisp(insn, value, errmsg)
unsigned insn;
int value;
const char **errmsg;
{
if (errmsg != (const char **)NULL && (value & 3))
*errmsg = _("branch operand unaligned");
return insn | ((value / 4) & 0x1FFFFF);
}
/*ARGSUSED*/
static int
extract_bdisp(insn, invalid)
unsigned insn;
int *invalid ATTRIBUTE_UNUSED;
{
return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
}
/* The hint field of a JMP/JSR insn. */
static unsigned
insert_jhint(insn, value, errmsg)
unsigned insn;
int value;
const char **errmsg;
{
if (errmsg != (const char **)NULL && (value & 3))
*errmsg = _("jump hint unaligned");
return insn | ((value / 4) & 0x3FFF);
}
/*ARGSUSED*/
static int
extract_jhint(insn, invalid)
unsigned insn;
int *invalid ATTRIBUTE_UNUSED;
{
return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
}
/* The hint field of an EV6 HW_JMP/JSR insn. */
static unsigned
insert_ev6hwjhint(insn, value, errmsg)
unsigned insn;
int value;
const char **errmsg;
{
if (errmsg != (const char **)NULL && (value & 3))
*errmsg = _("jump hint unaligned");
return insn | ((value / 4) & 0x1FFF);
}
/*ARGSUSED*/
static int
extract_ev6hwjhint(insn, invalid)
unsigned insn;
int *invalid ATTRIBUTE_UNUSED;
{
return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
}
/* Macros used to form opcodes */
/* The main opcode */
#define OP(x) (((x) & 0x3F) << 26)
#define OP_MASK 0xFC000000
/* Branch format instructions */
#define BRA_(oo) OP(oo)
#define BRA_MASK OP_MASK
#define BRA(oo) BRA_(oo), BRA_MASK
/* Floating point format instructions */
#define FP_(oo,fff) (OP(oo) | (((fff) & 0x7FF) << 5))
#define FP_MASK (OP_MASK | 0xFFE0)
#define FP(oo,fff) FP_(oo,fff), FP_MASK
/* Memory format instructions */
#define MEM_(oo) OP(oo)
#define MEM_MASK OP_MASK
#define MEM(oo) MEM_(oo), MEM_MASK
/* Memory/Func Code format instructions */
#define MFC_(oo,ffff) (OP(oo) | ((ffff) & 0xFFFF))
#define MFC_MASK (OP_MASK | 0xFFFF)
#define MFC(oo,ffff) MFC_(oo,ffff), MFC_MASK
/* Memory/Branch format instructions */
#define MBR_(oo,h) (OP(oo) | (((h) & 3) << 14))
#define MBR_MASK (OP_MASK | 0xC000)
#define MBR(oo,h) MBR_(oo,h), MBR_MASK
/* Operate format instructions. The OPRL variant specifies a
literal second argument. */
#define OPR_(oo,ff) (OP(oo) | (((ff) & 0x7F) << 5))
#define OPRL_(oo,ff) (OPR_((oo),(ff)) | 0x1000)
#define OPR_MASK (OP_MASK | 0x1FE0)
#define OPR(oo,ff) OPR_(oo,ff), OPR_MASK
#define OPRL(oo,ff) OPRL_(oo,ff), OPR_MASK
/* Generic PALcode format instructions */
#define PCD_(oo) OP(oo)
#define PCD_MASK OP_MASK
#define PCD(oo) PCD_(oo), PCD_MASK
/* Specific PALcode instructions */
#define SPCD_(oo,ffff) (OP(oo) | ((ffff) & 0x3FFFFFF))
#define SPCD_MASK 0xFFFFFFFF
#define SPCD(oo,ffff) SPCD_(oo,ffff), SPCD_MASK
/* Hardware memory (hw_{ld,st}) instructions */
#define EV4HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
#define EV4HWMEM_MASK (OP_MASK | 0xF000)
#define EV4HWMEM(oo,f) EV4HWMEM_(oo,f), EV4HWMEM_MASK
#define EV5HWMEM_(oo,f) (OP(oo) | (((f) & 0x3F) << 10))
#define EV5HWMEM_MASK (OP_MASK | 0xF800)
#define EV5HWMEM(oo,f) EV5HWMEM_(oo,f), EV5HWMEM_MASK
#define EV6HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
#define EV6HWMEM_MASK (OP_MASK | 0xF000)
#define EV6HWMEM(oo,f) EV6HWMEM_(oo,f), EV6HWMEM_MASK
#define EV6HWMBR_(oo,h) (OP(oo) | (((h) & 7) << 13))
#define EV6HWMBR_MASK (OP_MASK | 0xE000)
#define EV6HWMBR(oo,h) EV6HWMBR_(oo,h), EV6HWMBR_MASK
/* Abbreviations for instruction subsets. */
#define BASE AXP_OPCODE_BASE
#define EV4 AXP_OPCODE_EV4
#define EV5 AXP_OPCODE_EV5
#define EV6 AXP_OPCODE_EV6
#define BWX AXP_OPCODE_BWX
#define CIX AXP_OPCODE_CIX
#define MAX AXP_OPCODE_MAX
/* Common combinations of arguments */
#define ARG_NONE { 0 }
#define ARG_BRA { RA, BDISP }
#define ARG_FBRA { FA, BDISP }
#define ARG_FP { FA, FB, DFC1 }
#define ARG_FPZ1 { ZA, FB, DFC1 }
#define ARG_MEM { RA, MDISP, PRB }
#define ARG_FMEM { FA, MDISP, PRB }
#define ARG_OPR { RA, RB, DRC1 }
#define ARG_OPRL { RA, LIT, DRC1 }
#define ARG_OPRZ1 { ZA, RB, DRC1 }
#define ARG_OPRLZ1 { ZA, LIT, RC }
#define ARG_PCD { PALFN }
#define ARG_EV4HWMEM { RA, EV4HWDISP, PRB }
#define ARG_EV4HWMPR { RA, RBA, EV4HWINDEX }
#define ARG_EV5HWMEM { RA, EV5HWDISP, PRB }
#define ARG_EV6HWMEM { RA, EV6HWDISP, PRB }
/* The opcode table.
The format of the opcode table is:
NAME OPCODE MASK { OPERANDS }
NAME is the name of the instruction.
OPCODE is the instruction opcode.
MASK is the opcode mask; this is used to tell the disassembler
which bits in the actual opcode must match OPCODE.
OPERANDS is the list of operands.
The preceding macros merge the text of the OPCODE and MASK fields.
The disassembler reads the table in order and prints the first
instruction which matches, so this table is sorted to put more
specific instructions before more general instructions.
Otherwise, it is sorted by major opcode and minor function code.
There are three classes of not-really-instructions in this table:
ALIAS is another name for another instruction. Some of
these come from the Architecture Handbook, some
come from the original gas opcode tables. In all
cases, the functionality of the opcode is unchanged.
PSEUDO a stylized code form endorsed by Chapter A.4 of the
Architecture Handbook.
EXTRA a stylized code form found in the original gas tables.
And two annotations:
EV56 BUT opcodes that are officially introduced as of the ev56,
but with defined results on previous implementations.
EV56 UNA opcodes that were introduced as of the ev56 with
presumably undefined results on previous implementations
that were not assigned to a particular extension.
*/
const struct alpha_opcode alpha_opcodes[] = {
{ "halt", SPCD(0x00,0x0000), BASE, ARG_NONE },
{ "draina", SPCD(0x00,0x0002), BASE, ARG_NONE },
{ "bpt", SPCD(0x00,0x0080), BASE, ARG_NONE },
{ "bugchk", SPCD(0x00,0x0081), BASE, ARG_NONE },
{ "callsys", SPCD(0x00,0x0083), BASE, ARG_NONE },
{ "chmk", SPCD(0x00,0x0083), BASE, ARG_NONE },
{ "imb", SPCD(0x00,0x0086), BASE, ARG_NONE },
{ "rduniq", SPCD(0x00,0x009e), BASE, ARG_NONE },
{ "wruniq", SPCD(0x00,0x009f), BASE, ARG_NONE },
{ "gentrap", SPCD(0x00,0x00aa), BASE, ARG_NONE },
{ "call_pal", PCD(0x00), BASE, ARG_PCD },
{ "pal", PCD(0x00), BASE, ARG_PCD }, /* alias */
{ "lda", MEM(0x08), BASE, { RA, MDISP, ZB } }, /* pseudo */
{ "lda", MEM(0x08), BASE, ARG_MEM },
{ "ldah", MEM(0x09), BASE, { RA, MDISP, ZB } }, /* pseudo */
{ "ldah", MEM(0x09), BASE, ARG_MEM },
{ "ldbu", MEM(0x0A), BWX, ARG_MEM },
{ "unop", MEM_(0x0B) | (30 << 16),
MEM_MASK, BASE, { ZA } }, /* pseudo */
{ "ldq_u", MEM(0x0B), BASE, ARG_MEM },
{ "ldwu", MEM(0x0C), BWX, ARG_MEM },
{ "stw", MEM(0x0D), BWX, ARG_MEM },
{ "stb", MEM(0x0E), BWX, ARG_MEM },
{ "stq_u", MEM(0x0F), BASE, ARG_MEM },
{ "sextl", OPR(0x10,0x00), BASE, ARG_OPRZ1 }, /* pseudo */
{ "sextl", OPRL(0x10,0x00), BASE, ARG_OPRLZ1 }, /* pseudo */
{ "addl", OPR(0x10,0x00), BASE, ARG_OPR },
{ "addl", OPRL(0x10,0x00), BASE, ARG_OPRL },
{ "s4addl", OPR(0x10,0x02), BASE, ARG_OPR },
{ "s4addl", OPRL(0x10,0x02), BASE, ARG_OPRL },
{ "negl", OPR(0x10,0x09), BASE, ARG_OPRZ1 }, /* pseudo */
{ "negl", OPRL(0x10,0x09), BASE, ARG_OPRLZ1 }, /* pseudo */
{ "subl", OPR(0x10,0x09), BASE, ARG_OPR },
{ "subl", OPRL(0x10,0x09), BASE, ARG_OPRL },
{ "s4subl", OPR(0x10,0x0B), BASE, ARG_OPR },
{ "s4subl", OPRL(0x10,0x0B), BASE, ARG_OPRL },
{ "cmpbge", OPR(0x10,0x0F), BASE, ARG_OPR },
{ "cmpbge", OPRL(0x10,0x0F), BASE, ARG_OPRL },
{ "s8addl", OPR(0x10,0x12), BASE, ARG_OPR },
{ "s8addl", OPRL(0x10,0x12), BASE, ARG_OPRL },
{ "s8subl", OPR(0x10,0x1B), BASE, ARG_OPR },
{ "s8subl", OPRL(0x10,0x1B), BASE, ARG_OPRL },
{ "cmpult", OPR(0x10,0x1D), BASE, ARG_OPR },
{ "cmpult", OPRL(0x10,0x1D), BASE, ARG_OPRL },
{ "addq", OPR(0x10,0x20), BASE, ARG_OPR },
{ "addq", OPRL(0x10,0x20), BASE, ARG_OPRL },
{ "s4addq", OPR(0x10,0x22), BASE, ARG_OPR },
{ "s4addq", OPRL(0x10,0x22), BASE, ARG_OPRL },
{ "negq", OPR(0x10,0x29), BASE, ARG_OPRZ1 }, /* pseudo */
{ "negq", OPRL(0x10,0x29), BASE, ARG_OPRLZ1 }, /* pseudo */
{ "subq", OPR(0x10,0x29), BASE, ARG_OPR },
{ "subq", OPRL(0x10,0x29), BASE, ARG_OPRL },
{ "s4subq", OPR(0x10,0x2B), BASE, ARG_OPR },
{ "s4subq", OPRL(0x10,0x2B), BASE, ARG_OPRL },
{ "cmpeq", OPR(0x10,0x2D), BASE, ARG_OPR },
{ "cmpeq", OPRL(0x10,0x2D), BASE, ARG_OPRL },
{ "s8addq", OPR(0x10,0x32), BASE, ARG_OPR },
{ "s8addq", OPRL(0x10,0x32), BASE, ARG_OPRL },
{ "s8subq", OPR(0x10,0x3B), BASE, ARG_OPR },
{ "s8subq", OPRL(0x10,0x3B), BASE, ARG_OPRL },
{ "cmpule", OPR(0x10,0x3D), BASE, ARG_OPR },
{ "cmpule", OPRL(0x10,0x3D), BASE, ARG_OPRL },
{ "addl/v", OPR(0x10,0x40), BASE, ARG_OPR },
{ "addl/v", OPRL(0x10,0x40), BASE, ARG_OPRL },
{ "negl/v", OPR(0x10,0x49), BASE, ARG_OPRZ1 }, /* pseudo */
{ "negl/v", OPRL(0x10,0x49), BASE, ARG_OPRLZ1 }, /* pseudo */
{ "subl/v", OPR(0x10,0x49), BASE, ARG_OPR },
{ "subl/v", OPRL(0x10,0x49), BASE, ARG_OPRL },
{ "cmplt", OPR(0x10,0x4D), BASE, ARG_OPR },
{ "cmplt", OPRL(0x10,0x4D), BASE, ARG_OPRL },
{ "addq/v", OPR(0x10,0x60), BASE, ARG_OPR },
{ "addq/v", OPRL(0x10,0x60), BASE, ARG_OPRL },
{ "negq/v", OPR(0x10,0x69), BASE, ARG_OPRZ1 }, /* pseudo */
{ "negq/v", OPRL(0x10,0x69), BASE, ARG_OPRLZ1 }, /* pseudo */
{ "subq/v", OPR(0x10,0x69), BASE, ARG_OPR },
{ "subq/v", OPRL(0x10,0x69), BASE, ARG_OPRL },
{ "cmple", OPR(0x10,0x6D), BASE, ARG_OPR },
{ "cmple", OPRL(0x10,0x6D), BASE, ARG_OPRL },
{ "and", OPR(0x11,0x00), BASE, ARG_OPR },
{ "and", OPRL(0x11,0x00), BASE, ARG_OPRL },
{ "andnot", OPR(0x11,0x08), BASE, ARG_OPR }, /* alias */
{ "andnot", OPRL(0x11,0x08), BASE, ARG_OPRL }, /* alias */
{ "bic", OPR(0x11,0x08), BASE, ARG_OPR },
{ "bic", OPRL(0x11,0x08), BASE, ARG_OPRL },
{ "cmovlbs", OPR(0x11,0x14), BASE, ARG_OPR },
{ "cmovlbs", OPRL(0x11,0x14), BASE, ARG_OPRL },
{ "cmovlbc", OPR(0x11,0x16), BASE, ARG_OPR },
{ "cmovlbc", OPRL(0x11,0x16), BASE, ARG_OPRL },
{ "nop", OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
{ "clr", OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
{ "mov", OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
{ "mov", OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
{ "mov", OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
{ "or", OPR(0x11,0x20), BASE, ARG_OPR }, /* alias */
{ "or", OPRL(0x11,0x20), BASE, ARG_OPRL }, /* alias */
{ "bis", OPR(0x11,0x20), BASE, ARG_OPR },
{ "bis", OPRL(0x11,0x20), BASE, ARG_OPRL },
{ "cmoveq", OPR(0x11,0x24), BASE, ARG_OPR },
{ "cmoveq", OPRL(0x11,0x24), BASE, ARG_OPRL },
{ "cmovne", OPR(0x11,0x26), BASE, ARG_OPR },
{ "cmovne", OPRL(0x11,0x26), BASE, ARG_OPRL },
{ "not", OPR(0x11,0x28), BASE, ARG_OPRZ1 }, /* pseudo */
{ "not", OPRL(0x11,0x28), BASE, ARG_OPRLZ1 }, /* pseudo */
{ "ornot", OPR(0x11,0x28), BASE, ARG_OPR },
{ "ornot", OPRL(0x11,0x28), BASE, ARG_OPRL },
{ "xor", OPR(0x11,0x40), BASE, ARG_OPR },
{ "xor", OPRL(0x11,0x40), BASE, ARG_OPRL },
{ "cmovlt", OPR(0x11,0x44), BASE, ARG_OPR },
{ "cmovlt", OPRL(0x11,0x44), BASE, ARG_OPRL },
{ "cmovge", OPR(0x11,0x46), BASE, ARG_OPR },
{ "cmovge", OPRL(0x11,0x46), BASE, ARG_OPRL },
{ "eqv", OPR(0x11,0x48), BASE, ARG_OPR },
{ "eqv", OPRL(0x11,0x48), BASE, ARG_OPRL },
{ "xornot", OPR(0x11,0x48), BASE, ARG_OPR }, /* alias */
{ "xornot", OPRL(0x11,0x48), BASE, ARG_OPRL }, /* alias */
{ "amask", OPR(0x11,0x61), BASE, ARG_OPRZ1 }, /* ev56 but */
{ "amask", OPRL(0x11,0x61), BASE, ARG_OPRLZ1 }, /* ev56 but */
{ "cmovle", OPR(0x11,0x64), BASE, ARG_OPR },
{ "cmovle", OPRL(0x11,0x64), BASE, ARG_OPRL },
{ "cmovgt", OPR(0x11,0x66), BASE, ARG_OPR },
{ "cmovgt", OPRL(0x11,0x66), BASE, ARG_OPRL },
{ "implver", OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
0xFFFFFFE0, BASE, { RC } }, /* ev56 but */
{ "mskbl", OPR(0x12,0x02), BASE, ARG_OPR },
{ "mskbl", OPRL(0x12,0x02), BASE, ARG_OPRL },
{ "extbl", OPR(0x12,0x06), BASE, ARG_OPR },
{ "extbl", OPRL(0x12,0x06), BASE, ARG_OPRL },
{ "insbl", OPR(0x12,0x0B), BASE, ARG_OPR },
{ "insbl", OPRL(0x12,0x0B), BASE, ARG_OPRL },
{ "mskwl", OPR(0x12,0x12), BASE, ARG_OPR },
{ "mskwl", OPRL(0x12,0x12), BASE, ARG_OPRL },
{ "extwl", OPR(0x12,0x16), BASE, ARG_OPR },
{ "extwl", OPRL(0x12,0x16), BASE, ARG_OPRL },
{ "inswl", OPR(0x12,0x1B), BASE, ARG_OPR },
{ "inswl", OPRL(0x12,0x1B), BASE, ARG_OPRL },
{ "mskll", OPR(0x12,0x22), BASE, ARG_OPR },
{ "mskll", OPRL(0x12,0x22), BASE, ARG_OPRL },
{ "extll", OPR(0x12,0x26), BASE, ARG_OPR },
{ "extll", OPRL(0x12,0x26), BASE, ARG_OPRL },
{ "insll", OPR(0x12,0x2B), BASE, ARG_OPR },
{ "insll", OPRL(0x12,0x2B), BASE, ARG_OPRL },
{ "zap", OPR(0x12,0x30), BASE, ARG_OPR },
{ "zap", OPRL(0x12,0x30), BASE, ARG_OPRL },
{ "zapnot", OPR(0x12,0x31), BASE, ARG_OPR },
{ "zapnot", OPRL(0x12,0x31), BASE, ARG_OPRL },
{ "mskql", OPR(0x12,0x32), BASE, ARG_OPR },
{ "mskql", OPRL(0x12,0x32), BASE, ARG_OPRL },
{ "srl", OPR(0x12,0x34), BASE, ARG_OPR },
{ "srl", OPRL(0x12,0x34), BASE, ARG_OPRL },
{ "extql", OPR(0x12,0x36), BASE, ARG_OPR },
{ "extql", OPRL(0x12,0x36), BASE, ARG_OPRL },
{ "sll", OPR(0x12,0x39), BASE, ARG_OPR },
{ "sll", OPRL(0x12,0x39), BASE, ARG_OPRL },
{ "insql", OPR(0x12,0x3B), BASE, ARG_OPR },
{ "insql", OPRL(0x12,0x3B), BASE, ARG_OPRL },
{ "sra", OPR(0x12,0x3C), BASE, ARG_OPR },
{ "sra", OPRL(0x12,0x3C), BASE, ARG_OPRL },
{ "mskwh", OPR(0x12,0x52), BASE, ARG_OPR },
{ "mskwh", OPRL(0x12,0x52), BASE, ARG_OPRL },
{ "inswh", OPR(0x12,0x57), BASE, ARG_OPR },
{ "inswh", OPRL(0x12,0x57), BASE, ARG_OPRL },
{ "extwh", OPR(0x12,0x5A), BASE, ARG_OPR },
{ "extwh", OPRL(0x12,0x5A), BASE, ARG_OPRL },
{ "msklh", OPR(0x12,0x62), BASE, ARG_OPR },
{ "msklh", OPRL(0x12,0x62), BASE, ARG_OPRL },
{ "inslh", OPR(0x12,0x67), BASE, ARG_OPR },
{ "inslh", OPRL(0x12,0x67), BASE, ARG_OPRL },
{ "extlh", OPR(0x12,0x6A), BASE, ARG_OPR },
{ "extlh", OPRL(0x12,0x6A), BASE, ARG_OPRL },
{ "mskqh", OPR(0x12,0x72), BASE, ARG_OPR },
{ "mskqh", OPRL(0x12,0x72), BASE, ARG_OPRL },
{ "insqh", OPR(0x12,0x77), BASE, ARG_OPR },
{ "insqh", OPRL(0x12,0x77), BASE, ARG_OPRL },
{ "extqh", OPR(0x12,0x7A), BASE, ARG_OPR },
{ "extqh", OPRL(0x12,0x7A), BASE, ARG_OPRL },
{ "mull", OPR(0x13,0x00), BASE, ARG_OPR },
{ "mull", OPRL(0x13,0x00), BASE, ARG_OPRL },
{ "mulq", OPR(0x13,0x20), BASE, ARG_OPR },
{ "mulq", OPRL(0x13,0x20), BASE, ARG_OPRL },
{ "umulh", OPR(0x13,0x30), BASE, ARG_OPR },
{ "umulh", OPRL(0x13,0x30), BASE, ARG_OPRL },
{ "mull/v", OPR(0x13,0x40), BASE, ARG_OPR },
{ "mull/v", OPRL(0x13,0x40), BASE, ARG_OPRL },
{ "mulq/v", OPR(0x13,0x60), BASE, ARG_OPR },
{ "mulq/v", OPRL(0x13,0x60), BASE, ARG_OPRL },
{ "itofs", FP(0x14,0x004), CIX, { RA, ZB, FC } },
{ "sqrtf/c", FP(0x14,0x00A), CIX, ARG_FPZ1 },
{ "sqrts/c", FP(0x14,0x00B), CIX, ARG_FPZ1 },
{ "itoff", FP(0x14,0x014), CIX, { RA, ZB, FC } },
{ "itoft", FP(0x14,0x024), CIX, { RA, ZB, FC } },
{ "sqrtg/c", FP(0x14,0x02A), CIX, ARG_FPZ1 },
{ "sqrtt/c", FP(0x14,0x02B), CIX, ARG_FPZ1 },
{ "sqrts/m", FP(0x14,0x04B), CIX, ARG_FPZ1 },
{ "sqrtt/m", FP(0x14,0x06B), CIX, ARG_FPZ1 },
{ "sqrtf", FP(0x14,0x08A), CIX, ARG_FPZ1 },
{ "sqrts", FP(0x14,0x08B), CIX, ARG_FPZ1 },
{ "sqrtg", FP(0x14,0x0AA), CIX, ARG_FPZ1 },
{ "sqrtt", FP(0x14,0x0AB), CIX, ARG_FPZ1 },
{ "sqrts/d", FP(0x14,0x0CB), CIX, ARG_FPZ1 },
{ "sqrtt/d", FP(0x14,0x0EB), CIX, ARG_FPZ1 },
{ "sqrtf/uc", FP(0x14,0x10A), CIX, ARG_FPZ1 },
{ "sqrts/uc", FP(0x14,0x10B), CIX, ARG_FPZ1 },
{ "sqrtg/uc", FP(0x14,0x12A), CIX, ARG_FPZ1 },
{ "sqrtt/uc", FP(0x14,0x12B), CIX, ARG_FPZ1 },
{ "sqrts/um", FP(0x14,0x14B), CIX, ARG_FPZ1 },
{ "sqrtt/um", FP(0x14,0x16B), CIX, ARG_FPZ1 },
{ "sqrtf/u", FP(0x14,0x18A), CIX, ARG_FPZ1 },
{ "sqrts/u", FP(0x14,0x18B), CIX, ARG_FPZ1 },
{ "sqrtg/u", FP(0x14,0x1AA), CIX, ARG_FPZ1 },
{ "sqrtt/u", FP(0x14,0x1AB), CIX, ARG_FPZ1 },
{ "sqrts/ud", FP(0x14,0x1CB), CIX, ARG_FPZ1 },
{ "sqrtt/ud", FP(0x14,0x1EB), CIX, ARG_FPZ1 },
{ "sqrtf/sc", FP(0x14,0x40A), CIX, ARG_FPZ1 },
{ "sqrtg/sc", FP(0x14,0x42A), CIX, ARG_FPZ1 },
{ "sqrtf/s", FP(0x14,0x48A), CIX, ARG_FPZ1 },
{ "sqrtg/s", FP(0x14,0x4AA), CIX, ARG_FPZ1 },
{ "sqrtf/suc", FP(0x14,0x50A), CIX, ARG_FPZ1 },
{ "sqrts/suc", FP(0x14,0x50B), CIX, ARG_FPZ1 },
{ "sqrtg/suc", FP(0x14,0x52A), CIX, ARG_FPZ1 },
{ "sqrtt/suc", FP(0x14,0x52B), CIX, ARG_FPZ1 },
{ "sqrts/sum", FP(0x14,0x54B), CIX, ARG_FPZ1 },
{ "sqrtt/sum", FP(0x14,0x56B), CIX, ARG_FPZ1 },
{ "sqrtf/su", FP(0x14,0x58A), CIX, ARG_FPZ1 },
{ "sqrts/su", FP(0x14,0x58B), CIX, ARG_FPZ1 },
{ "sqrtg/su", FP(0x14,0x5AA), CIX, ARG_FPZ1 },
{ "sqrtt/su", FP(0x14,0x5AB), CIX, ARG_FPZ1 },
{ "sqrts/sud", FP(0x14,0x5CB), CIX, ARG_FPZ1 },
{ "sqrtt/sud", FP(0x14,0x5EB), CIX, ARG_FPZ1 },
{ "sqrts/suic", FP(0x14,0x70B), CIX, ARG_FPZ1 },
{ "sqrtt/suic", FP(0x14,0x72B), CIX, ARG_FPZ1 },
{ "sqrts/suim", FP(0x14,0x74B), CIX, ARG_FPZ1 },
{ "sqrtt/suim", FP(0x14,0x76B), CIX, ARG_FPZ1 },
{ "sqrts/sui", FP(0x14,0x78B), CIX, ARG_FPZ1 },
{ "sqrtt/sui", FP(0x14,0x7AB), CIX, ARG_FPZ1 },
{ "sqrts/suid", FP(0x14,0x7CB), CIX, ARG_FPZ1 },
{ "sqrtt/suid", FP(0x14,0x7EB), CIX, ARG_FPZ1 },
{ "addf/c", FP(0x15,0x000), BASE, ARG_FP },
{ "subf/c", FP(0x15,0x001), BASE, ARG_FP },
{ "mulf/c", FP(0x15,0x002), BASE, ARG_FP },
{ "divf/c", FP(0x15,0x003), BASE, ARG_FP },
{ "cvtdg/c", FP(0x15,0x01E), BASE, ARG_FPZ1 },
{ "addg/c", FP(0x15,0x020), BASE, ARG_FP },