-
Notifications
You must be signed in to change notification settings - Fork 5
/
exec.c
3770 lines (3382 loc) · 112 KB
/
exec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* virtual page mapping and translated block handling
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
*/
#include "config.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>
#include "cpu.h"
#include "exec-all.h"
#include "qemu-common.h"
#include "tcg.h"
#include "hw/hw.h"
#include "osdep.h"
#include "kvm.h"
#if defined(CONFIG_USER_ONLY)
#include <qemu.h>
#endif
//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
//#define DEBUG_TLB
//#define DEBUG_UNASSIGNED
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK
//#define DEBUG_TLB_CHECK
//#define DEBUG_IOPORT
//#define DEBUG_SUBPAGE
#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation. */
#undef DEBUG_TB_CHECK
#endif
#define SMC_BITMAP_USE_THRESHOLD 10
#if defined(TARGET_SPARC64)
#define TARGET_PHYS_ADDR_SPACE_BITS 41
#elif defined(TARGET_SPARC)
#define TARGET_PHYS_ADDR_SPACE_BITS 36
#elif defined(TARGET_ALPHA)
#define TARGET_PHYS_ADDR_SPACE_BITS 42
#define TARGET_VIRT_ADDR_SPACE_BITS 42
#elif defined(TARGET_PPC64)
#define TARGET_PHYS_ADDR_SPACE_BITS 42
#elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
#define TARGET_PHYS_ADDR_SPACE_BITS 42
#elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
#define TARGET_PHYS_ADDR_SPACE_BITS 36
#else
/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
#define TARGET_PHYS_ADDR_SPACE_BITS 32
#endif
static TranslationBlock *tbs;
int code_gen_max_blocks;
TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
static int nb_tbs;
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
#if defined(__arm__) || defined(__sparc_v9__)
/* The prologue must be reachable with a direct jump. ARM and Sparc64
have limited branch ranges (possibly also PPC) so place it in a
section close to code segment. */
#define code_gen_section \
__attribute__((__section__(".gen_code"))) \
__attribute__((aligned (32)))
#else
#define code_gen_section \
__attribute__((aligned (32)))
#endif
uint8_t code_gen_prologue[1024] code_gen_section;
static uint8_t *code_gen_buffer;
static unsigned long code_gen_buffer_size;
/* threshold to flush the translated code buffer */
static unsigned long code_gen_buffer_max_size;
uint8_t *code_gen_ptr;
#if !defined(CONFIG_USER_ONLY)
int phys_ram_fd;
uint8_t *phys_ram_dirty;
static int in_migration;
typedef struct RAMBlock {
uint8_t *host;
ram_addr_t offset;
ram_addr_t length;
struct RAMBlock *next;
} RAMBlock;
static RAMBlock *ram_blocks;
/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
then we can no longer assume contiguous ram offsets, and external uses
of this variable will break. */
ram_addr_t last_ram_offset;
#endif
CPUState *first_cpu;
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
CPUState *cpu_single_env;
/* 0 = Do not count executed instructions.
1 = Precise instruction counting.
2 = Adaptive rate instruction counting. */
int use_icount = 0;
/* Current instruction counter. While executing translated code this may
include some instructions that have not yet been executed. */
int64_t qemu_icount;
typedef struct PageDesc {
/* list of TBs intersecting this ram page */
TranslationBlock *first_tb;
/* in order to optimize self modifying code, we count the number
of lookups we do to a given page to use a bitmap */
unsigned int code_write_count;
uint8_t *code_bitmap;
#if defined(CONFIG_USER_ONLY)
unsigned long flags;
#endif
} PageDesc;
typedef struct PhysPageDesc {
/* offset in host memory of the page + io_index in the low bits */
ram_addr_t phys_offset;
ram_addr_t region_offset;
} PhysPageDesc;
#define L2_BITS 10
#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
/* XXX: this is a temporary hack for alpha target.
* In the future, this is to be replaced by a multi-level table
* to actually be able to handle the complete 64 bits address space.
*/
#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
#else
#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
#endif
#define L1_SIZE (1 << L1_BITS)
#define L2_SIZE (1 << L2_BITS)
unsigned long qemu_real_host_page_size;
unsigned long qemu_host_page_bits;
unsigned long qemu_host_page_size;
unsigned long qemu_host_page_mask;
/* XXX: for system emulation, it could just be an array */
static PageDesc *l1_map[L1_SIZE];
static PhysPageDesc **l1_phys_map;
#if !defined(CONFIG_USER_ONLY)
static void io_mem_init(void);
/* io memory support */
CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
void *io_mem_opaque[IO_MEM_NB_ENTRIES];
static char io_mem_used[IO_MEM_NB_ENTRIES];
static int io_mem_watch;
#endif
/* log support */
static const char *logfilename = "/tmp/qemu.log";
FILE *logfile;
int loglevel;
static int log_append = 0;
/* statistics */
static int tlb_flush_count;
static int tb_flush_count;
static int tb_phys_invalidate_count;
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
target_phys_addr_t base;
CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
void *opaque[TARGET_PAGE_SIZE][2][4];
ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
} subpage_t;
#ifdef _WIN32
static void map_exec(void *addr, long size)
{
DWORD old_protect;
VirtualProtect(addr, size,
PAGE_EXECUTE_READWRITE, &old_protect);
}
#else
static void map_exec(void *addr, long size)
{
unsigned long start, end, page_size;
page_size = getpagesize();
start = (unsigned long)addr;
start &= ~(page_size - 1);
end = (unsigned long)addr + size;
end += page_size - 1;
end &= ~(page_size - 1);
mprotect((void *)start, end - start,
PROT_READ | PROT_WRITE | PROT_EXEC);
}
#endif
static void page_init(void)
{
/* NOTE: we can always suppose that qemu_host_page_size >=
TARGET_PAGE_SIZE */
#ifdef _WIN32
{
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
qemu_real_host_page_size = system_info.dwPageSize;
}
#else
qemu_real_host_page_size = getpagesize();
#endif
if (qemu_host_page_size == 0)
qemu_host_page_size = qemu_real_host_page_size;
if (qemu_host_page_size < TARGET_PAGE_SIZE)
qemu_host_page_size = TARGET_PAGE_SIZE;
qemu_host_page_bits = 0;
while ((1 << qemu_host_page_bits) < qemu_host_page_size)
qemu_host_page_bits++;
qemu_host_page_mask = ~(qemu_host_page_size - 1);
l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
{
long long startaddr, endaddr;
FILE *f;
int n;
mmap_lock();
last_brk = (unsigned long)sbrk(0);
f = fopen("/proc/self/maps", "r");
if (f) {
do {
n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
if (n == 2) {
startaddr = MIN(startaddr,
(1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
endaddr = MIN(endaddr,
(1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
page_set_flags(startaddr & TARGET_PAGE_MASK,
TARGET_PAGE_ALIGN(endaddr),
PAGE_RESERVED);
}
} while (!feof(f));
fclose(f);
}
mmap_unlock();
}
#endif
}
static inline PageDesc **page_l1_map(target_ulong index)
{
#if TARGET_LONG_BITS > 32
/* Host memory outside guest VM. For 32-bit targets we have already
excluded high addresses. */
if (index > ((target_ulong)L2_SIZE * L1_SIZE))
return NULL;
#endif
return &l1_map[index >> L2_BITS];
}
static inline PageDesc *page_find_alloc(target_ulong index)
{
PageDesc **lp, *p;
lp = page_l1_map(index);
if (!lp)
return NULL;
p = *lp;
if (!p) {
/* allocate if not found */
#if defined(CONFIG_USER_ONLY)
size_t len = sizeof(PageDesc) * L2_SIZE;
/* Don't use qemu_malloc because it may recurse. */
p = mmap(0, len, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
*lp = p;
if (h2g_valid(p)) {
unsigned long addr = h2g(p);
page_set_flags(addr & TARGET_PAGE_MASK,
TARGET_PAGE_ALIGN(addr + len),
PAGE_RESERVED);
}
#else
p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
*lp = p;
#endif
}
return p + (index & (L2_SIZE - 1));
}
static inline PageDesc *page_find(target_ulong index)
{
PageDesc **lp, *p;
lp = page_l1_map(index);
if (!lp)
return NULL;
p = *lp;
if (!p)
return 0;
return p + (index & (L2_SIZE - 1));
}
static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
{
void **lp, **p;
PhysPageDesc *pd;
p = (void **)l1_phys_map;
#if TARGET_PHYS_ADDR_SPACE_BITS > 32
#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
#endif
lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
p = *lp;
if (!p) {
/* allocate if not found */
if (!alloc)
return NULL;
p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
memset(p, 0, sizeof(void *) * L1_SIZE);
*lp = p;
}
#endif
lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
pd = *lp;
if (!pd) {
int i;
/* allocate if not found */
if (!alloc)
return NULL;
pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
*lp = pd;
for (i = 0; i < L2_SIZE; i++) {
pd[i].phys_offset = IO_MEM_UNASSIGNED;
pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
}
}
return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
}
static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
{
return phys_page_find_alloc(index, 0);
}
#if !defined(CONFIG_USER_ONLY)
static void tlb_protect_code(ram_addr_t ram_addr);
static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
target_ulong vaddr);
#define mmap_lock() do { } while(0)
#define mmap_unlock() do { } while(0)
#endif
#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
user mode. It will change when a dedicated libc will be used */
#define USE_STATIC_CODE_GEN_BUFFER
#endif
#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
#endif
static void code_gen_alloc(unsigned long tb_size)
{
#ifdef USE_STATIC_CODE_GEN_BUFFER
code_gen_buffer = static_code_gen_buffer;
code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
map_exec(code_gen_buffer, code_gen_buffer_size);
#else
code_gen_buffer_size = tb_size;
if (code_gen_buffer_size == 0) {
#if defined(CONFIG_USER_ONLY)
/* in user mode, phys_ram_size is not meaningful */
code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
/* XXX: needs adjustments */
code_gen_buffer_size = (unsigned long)(ram_size / 4);
#endif
}
if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
/* The code gen buffer location may have constraints depending on
the host cpu and OS */
#if defined(__linux__)
{
int flags;
void *start = NULL;
flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if defined(__x86_64__)
flags |= MAP_32BIT;
/* Cannot map more than that */
if (code_gen_buffer_size > (800 * 1024 * 1024))
code_gen_buffer_size = (800 * 1024 * 1024);
#elif defined(__sparc_v9__)
// Map the buffer below 2G, so we can use direct calls and branches
flags |= MAP_FIXED;
start = (void *) 0x60000000UL;
if (code_gen_buffer_size > (512 * 1024 * 1024))
code_gen_buffer_size = (512 * 1024 * 1024);
#elif defined(__arm__)
/* Map the buffer below 32M, so we can use direct calls and branches */
flags |= MAP_FIXED;
start = (void *) 0x01000000UL;
if (code_gen_buffer_size > 16 * 1024 * 1024)
code_gen_buffer_size = 16 * 1024 * 1024;
#endif
code_gen_buffer = mmap(start, code_gen_buffer_size,
PROT_WRITE | PROT_READ | PROT_EXEC,
flags, -1, 0);
if (code_gen_buffer == MAP_FAILED) {
fprintf(stderr, "Could not allocate dynamic translator buffer\n");
exit(1);
}
}
#elif defined(__FreeBSD__) || defined(__DragonFly__)
{
int flags;
void *addr = NULL;
flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if defined(__x86_64__)
/* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
* 0x40000000 is free */
flags |= MAP_FIXED;
addr = (void *)0x40000000;
/* Cannot map more than that */
if (code_gen_buffer_size > (800 * 1024 * 1024))
code_gen_buffer_size = (800 * 1024 * 1024);
#endif
code_gen_buffer = mmap(addr, code_gen_buffer_size,
PROT_WRITE | PROT_READ | PROT_EXEC,
flags, -1, 0);
if (code_gen_buffer == MAP_FAILED) {
fprintf(stderr, "Could not allocate dynamic translator buffer\n");
exit(1);
}
}
#else
code_gen_buffer = qemu_malloc(code_gen_buffer_size);
map_exec(code_gen_buffer, code_gen_buffer_size);
#endif
#endif /* !USE_STATIC_CODE_GEN_BUFFER */
map_exec(code_gen_prologue, sizeof(code_gen_prologue));
code_gen_buffer_max_size = code_gen_buffer_size -
code_gen_max_block_size();
code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
}
/* Must be called before using the QEMU cpus. 'tb_size' is the size
(in bytes) allocated to the translation buffer. Zero means default
size. */
void cpu_exec_init_all(unsigned long tb_size)
{
cpu_gen_init();
code_gen_alloc(tb_size);
code_gen_ptr = code_gen_buffer;
page_init();
#if !defined(CONFIG_USER_ONLY)
io_mem_init();
#endif
}
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
#define CPU_COMMON_SAVE_VERSION 1
static void cpu_common_save(QEMUFile *f, void *opaque)
{
CPUState *env = opaque;
qemu_put_be32s(f, &env->halted);
qemu_put_be32s(f, &env->interrupt_request);
}
static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
{
CPUState *env = opaque;
if (version_id != CPU_COMMON_SAVE_VERSION)
return -EINVAL;
qemu_get_be32s(f, &env->halted);
qemu_get_be32s(f, &env->interrupt_request);
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
version_id is increased. */
env->interrupt_request &= ~0x01;
tlb_flush(env, 1);
return 0;
}
#endif
void cpu_exec_init(CPUState *env)
{
CPUState **penv;
int cpu_index;
#if defined(CONFIG_USER_ONLY)
cpu_list_lock();
#endif
env->next_cpu = NULL;
penv = &first_cpu;
cpu_index = 0;
while (*penv != NULL) {
penv = (CPUState **)&(*penv)->next_cpu;
cpu_index++;
}
env->cpu_index = cpu_index;
env->numa_node = 0;
TAILQ_INIT(&env->breakpoints);
TAILQ_INIT(&env->watchpoints);
*penv = env;
#if defined(CONFIG_USER_ONLY)
cpu_list_unlock();
#endif
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
cpu_common_save, cpu_common_load, env);
register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
cpu_save, cpu_load, env);
#endif
}
static inline void invalidate_page_bitmap(PageDesc *p)
{
if (p->code_bitmap) {
qemu_free(p->code_bitmap);
p->code_bitmap = NULL;
}
p->code_write_count = 0;
}
/* set to NULL all the 'first_tb' fields in all PageDescs */
static void page_flush_tb(void)
{
int i, j;
PageDesc *p;
for(i = 0; i < L1_SIZE; i++) {
p = l1_map[i];
if (p) {
for(j = 0; j < L2_SIZE; j++) {
p->first_tb = NULL;
invalidate_page_bitmap(p);
p++;
}
}
}
}
/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
void tb_flush(CPUState *env1)
{
CPUState *env;
#if defined(DEBUG_FLUSH)
printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
(unsigned long)(code_gen_ptr - code_gen_buffer),
nb_tbs, nb_tbs > 0 ?
((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
#endif
if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
cpu_abort(env1, "Internal error: code buffer overflow\n");
nb_tbs = 0;
for(env = first_cpu; env != NULL; env = env->next_cpu) {
memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
}
memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
page_flush_tb();
code_gen_ptr = code_gen_buffer;
/* XXX: flush processor icache at this point if cache flush is
expensive */
tb_flush_count++;
}
#ifdef DEBUG_TB_CHECK
static void tb_invalidate_check(target_ulong address)
{
TranslationBlock *tb;
int i;
address &= TARGET_PAGE_MASK;
for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
address >= tb->pc + tb->size)) {
printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
address, (long)tb->pc, tb->size);
}
}
}
}
/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
TranslationBlock *tb;
int i, flags1, flags2;
for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
flags1 = page_get_flags(tb->pc);
flags2 = page_get_flags(tb->pc + tb->size - 1);
if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
(long)tb->pc, tb->size, flags1, flags2);
}
}
}
}
static void tb_jmp_check(TranslationBlock *tb)
{
TranslationBlock *tb1;
unsigned int n1;
/* suppress any remaining jumps to this TB */
tb1 = tb->jmp_first;
for(;;) {
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (n1 == 2)
break;
tb1 = tb1->jmp_next[n1];
}
/* check end of list */
if (tb1 != tb) {
printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
}
}
#endif
/* invalidate one TB */
static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
int next_offset)
{
TranslationBlock *tb1;
for(;;) {
tb1 = *ptb;
if (tb1 == tb) {
*ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
break;
}
ptb = (TranslationBlock **)((char *)tb1 + next_offset);
}
}
static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
TranslationBlock *tb1;
unsigned int n1;
for(;;) {
tb1 = *ptb;
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (tb1 == tb) {
*ptb = tb1->page_next[n1];
break;
}
ptb = &tb1->page_next[n1];
}
}
static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
TranslationBlock *tb1, **ptb;
unsigned int n1;
ptb = &tb->jmp_next[n];
tb1 = *ptb;
if (tb1) {
/* find tb(n) in circular list */
for(;;) {
tb1 = *ptb;
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
if (n1 == 2) {
ptb = &tb1->jmp_first;
} else {
ptb = &tb1->jmp_next[n1];
}
}
/* now we can suppress tb(n) from the list */
*ptb = tb->jmp_next[n];
tb->jmp_next[n] = NULL;
}
}
/* reset the jump entry 'n' of a TB so that it is not chained to
another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
}
void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
{
CPUState *env;
PageDesc *p;
unsigned int h, n1;
target_phys_addr_t phys_pc;
TranslationBlock *tb1, *tb2;
/* remove the TB from the hash list */
phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
h = tb_phys_hash_func(phys_pc);
tb_remove(&tb_phys_hash[h], tb,
offsetof(TranslationBlock, phys_hash_next));
/* remove the TB from the page list */
if (tb->page_addr[0] != page_addr) {
p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
tb_page_remove(&p->first_tb, tb);
invalidate_page_bitmap(p);
}
if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
tb_page_remove(&p->first_tb, tb);
invalidate_page_bitmap(p);
}
tb_invalidated_flag = 1;
/* remove the TB from the hash list */
h = tb_jmp_cache_hash_func(tb->pc);
for(env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->tb_jmp_cache[h] == tb)
env->tb_jmp_cache[h] = NULL;
}
/* suppress this TB from the two jump lists */
tb_jmp_remove(tb, 0);
tb_jmp_remove(tb, 1);
/* suppress any remaining jumps to this TB */
tb1 = tb->jmp_first;
for(;;) {
n1 = (long)tb1 & 3;
if (n1 == 2)
break;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
tb2 = tb1->jmp_next[n1];
tb_reset_jump(tb1, n1);
tb1->jmp_next[n1] = NULL;
tb1 = tb2;
}
tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
tb_phys_invalidate_count++;
}
static inline void set_bits(uint8_t *tab, int start, int len)
{
int end, mask, end1;
end = start + len;
tab += start >> 3;
mask = 0xff << (start & 7);
if ((start & ~7) == (end & ~7)) {
if (start < end) {
mask &= ~(0xff << (end & 7));
*tab |= mask;
}
} else {
*tab++ |= mask;
start = (start + 8) & ~7;
end1 = end & ~7;
while (start < end1) {
*tab++ = 0xff;
start += 8;
}
if (start < end) {
mask = ~(0xff << (end & 7));
*tab |= mask;
}
}
}
static void build_page_bitmap(PageDesc *p)
{
int n, tb_start, tb_end;
TranslationBlock *tb;
p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
tb = p->first_tb;
while (tb != NULL) {
n = (long)tb & 3;
tb = (TranslationBlock *)((long)tb & ~3);
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
/* NOTE: tb_end may be after the end of the page, but
it is not a problem */
tb_start = tb->pc & ~TARGET_PAGE_MASK;
tb_end = tb_start + tb->size;
if (tb_end > TARGET_PAGE_SIZE)
tb_end = TARGET_PAGE_SIZE;
} else {
tb_start = 0;
tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
}
set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
tb = tb->page_next[n];
}
}
TranslationBlock *tb_gen_code(CPUState *env,
target_ulong pc, target_ulong cs_base,
int flags, int cflags)
{
TranslationBlock *tb;
uint8_t *tc_ptr;
target_ulong phys_pc, phys_page2, virt_page2;
int code_gen_size;
phys_pc = get_phys_addr_code(env, pc);
tb = tb_alloc(pc);
if (!tb) {
/* flush must be done */
tb_flush(env);
/* cannot fail at this point */
tb = tb_alloc(pc);
/* Don't forget to invalidate previous TB info. */
tb_invalidated_flag = 1;
}
tc_ptr = code_gen_ptr;
tb->tc_ptr = tc_ptr;
tb->cs_base = cs_base;
tb->flags = flags;
tb->cflags = cflags;
cpu_gen_code(env, tb, &code_gen_size);
code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
/* check next page if needed */
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
phys_page2 = -1;
if ((pc & TARGET_PAGE_MASK) != virt_page2) {
phys_page2 = get_phys_addr_code(env, virt_page2);
}
tb_link_phys(tb, phys_pc, phys_page2);
return tb;
}
/* invalidate all TBs which intersect with the target physical page
starting in range [start;end[. NOTE: start and end must refer to
the same physical page. 'is_cpu_write_access' should be true if called
from a real cpu write access: the virtual CPU will exit the current
TB if code is modified inside this TB. */
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
int is_cpu_write_access)
{
TranslationBlock *tb, *tb_next, *saved_tb;
CPUState *env = cpu_single_env;
target_ulong tb_start, tb_end;
PageDesc *p;
int n;
#ifdef TARGET_HAS_PRECISE_SMC
int current_tb_not_found = is_cpu_write_access;
TranslationBlock *current_tb = NULL;
int current_tb_modified = 0;
target_ulong current_pc = 0;
target_ulong current_cs_base = 0;
int current_flags = 0;
#endif /* TARGET_HAS_PRECISE_SMC */
p = page_find(start >> TARGET_PAGE_BITS);
if (!p)
return;
if (!p->code_bitmap &&
++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
is_cpu_write_access) {
/* build code bitmap */
build_page_bitmap(p);
}
/* we remove all the TBs in the range [start, end[ */
/* XXX: see if in some cases it could be faster to invalidate all the code */
tb = p->first_tb;
while (tb != NULL) {
n = (long)tb & 3;
tb = (TranslationBlock *)((long)tb & ~3);
tb_next = tb->page_next[n];
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
/* NOTE: tb_end may be after the end of the page, but
it is not a problem */
tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
tb_end = tb_start + tb->size;
} else {
tb_start = tb->page_addr[1];
tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
}
if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_not_found) {
current_tb_not_found = 0;
current_tb = NULL;
if (env->mem_io_pc) {
/* now we have a real cpu fault */
current_tb = tb_find_pc(env->mem_io_pc);
}
}
if (current_tb == tb &&
(current_tb->cflags & CF_COUNT_MASK) != 1) {
/* If we are modifying the current TB, we must stop
its execution. We could be more precise by checking
that the modification is after the current PC, but it
would require a specialized function to partially
restore the CPU state */
current_tb_modified = 1;
cpu_restore_state(current_tb, env,
env->mem_io_pc, NULL);
cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
¤t_flags);
}
#endif /* TARGET_HAS_PRECISE_SMC */
/* we need to do that to handle the case where a signal
occurs while doing tb_phys_invalidate() */
saved_tb = NULL;
if (env) {
saved_tb = env->current_tb;
env->current_tb = NULL;
}
tb_phys_invalidate(tb, -1);
if (env) {
env->current_tb = saved_tb;
if (env->interrupt_request && env->current_tb)
cpu_interrupt(env, env->interrupt_request);
}
}
tb = tb_next;
}
#if !defined(CONFIG_USER_ONLY)
/* if no code remaining, no need to continue to use slow writes */
if (!p->first_tb) {
invalidate_page_bitmap(p);
if (is_cpu_write_access) {
tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
}
}
#endif
#ifdef TARGET_HAS_PRECISE_SMC