Skip to content

Latest commit

 

History

History

004. Longest Palindromic Substring

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Question is Longest Palindromic Substring.

假设 S(i, j) 为问题的解,即从位置 ij 的字符串是 Longest Palindromic Substring of the string.

我们从最简单的字符串来想:

a

单字符本身是否是回文?是。即 S(i, i)

a a

两个相同字符是否组成回文?是。即 S(i, i+1) when s[i] == s[i+1].

b a a b

为上面的回文字符串首尾增加一个相同的字符 b, 组成了回文,即 S(i, j) when S(i+1, j-1) and s[i] == s[j].

由于我们持续在首尾增加字符,对于单字符,则长度一直为奇数;对于双字符,则长度一直为偶数。所以要涵盖所有情况,需要分别验证这两种情况。

好了,分析到这里基本可以明白回文的规律所在了。

要求的是长度,那么我们记 Longest Palindromic Substring 为 longest.

void longestPalindrome(const string& s, int b, int e, int &start, int &last) {
    // 这个函数尝试对现有子串首尾扩张,若出现更大的长度,则记录之。
    int len = s.size();
    while (b >= 0 && e < len && s[b] == s[e])
        --b, ++e;
    ++b, --e;
    if (e - b > last - start) {
        start = b;
        last = e;
    }
}

主函数里就非常轻松惬意了。

string longestPalindrome(string s) {
    int len = s.size();
    if (len == 0) return s;
    int start = 0, last = 0;
    for (int i=0; i<len-1; ++i) {
        longestPalindrome(s, i, i, start, last); // 奇数情况
        longestPalindrome(s, i, i+1, start, last); // 偶数情况
    }
    return s.substr(start, last-start+1);
}

时间复杂度应该在 O(n^2), 空间复杂度为 O(1). 属于常规解法。


此题可以做到 O(n) 的时间复杂度。请参考这里.