-
Notifications
You must be signed in to change notification settings - Fork 6
/
sam_finetune.py
144 lines (117 loc) · 5.08 KB
/
sam_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import cv2
import json
import random
from tqdm import tqdm
from statistics import mean
import torch
import numpy as np
from sam import sam_model_registry
from sam.utils.transforms import ResizeLongestSide
# def get_training_files(path):
# imageists = sorted(os.listdir(os.path.join(path, "images")))
# img_all = []
# for image in imageists:
# i_path = os.path.join(path, "images", image)
# imglist = sorted(os.listdir(i_path))
# img_all = img_all + [os.path.join(i_path, img) for img in imglist]
# return img_all
def get_training_files(path):
image_dir = os.path.join(path, "images")
img_all = [os.path.join(image_dir, img) for img in sorted(os.listdir(image_dir))]
return img_all
def main():
sam_checkpoint = "./checkpoints/sam_vit_b_01ec64.pth"
model_type = "vit_b"
device = "cuda"
training_path = "./datasets/train"
sam_model = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam_model.to(device=device)
sam_model.train()
print(
"Params: {}M".format(
sum(p.numel() for p in sam_model.mask_decoder.parameters()) / 1e6
)
)
lr = 1e-4
optimizer = torch.optim.Adam(
sam_model.mask_decoder.parameters(), lr=lr, weight_decay=0
)
# loss_fn = torch.nn.MSELoss()
loss_fn = torch.nn.BCEWithLogitsLoss()
with open("./datasets/sam_train.json", "r") as f:
meta = json.load(f)
# get the training files
img_all = get_training_files(training_path)
# start training!!!
num_epochs = 200
for epoch in range(num_epochs):
epoch_losses = []
random.shuffle(img_all) # random shuffle the training files
lab_all = [
p.replace("images", "labels").replace(".jpg", ".png") for p in img_all
]
img_all_pbar = tqdm(img_all)
for i, img_path in enumerate(img_all_pbar):
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
label = cv2.imread(lab_all[i])
label = cv2.cvtColor(label, cv2.COLOR_BGR2GRAY)
# transform
sam_trans = ResizeLongestSide(sam_model.image_encoder.img_size) # 1024
resize_image = sam_trans.apply_image(image)
image_tensor = torch.as_tensor(resize_image, device=device)
input_image_torch = image_tensor.permute(2, 0, 1).contiguous()[
None, :, :, :
]
input_image = sam_model.preprocess(input_image_torch)
original_image_size = image.shape[:2]
input_size = tuple(input_image_torch.shape[-2:])
file_name = os.path.basename(img_path).replace("jpg", "png")
bboxes = meta[file_name]["bbox"]
bboxes = np.array(bboxes)
with torch.no_grad():
box = sam_trans.apply_boxes(bboxes, (original_image_size))
box_torch = torch.as_tensor(box, dtype=torch.float, device=device)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :]
image_embedding = sam_model.image_encoder(input_image)
sparse_embeddings, dense_embeddings = sam_model.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_masks, iou_predictions = sam_model.mask_decoder(
image_embeddings=image_embedding,
image_pe=sam_model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
low_res_masks = torch.sum(low_res_masks, dim=0, keepdim=True)
upscaled_masks = sam_model.postprocess_masks(
low_res_masks, input_size, original_image_size
).to(device)
gt_mask_resized = torch.from_numpy(
np.resize(label, (1, 1, label.shape[0], label.shape[1]))
).to(device)
gt_binary_mask = torch.as_tensor(gt_mask_resized > 0, dtype=torch.float32)
loss = loss_fn(upscaled_masks, gt_binary_mask)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_losses.append(loss.item())
if i % 100 == 0:
img_all_pbar.set_postfix(loss=mean(epoch_losses))
image_save = cv2.imread(img_path)
image_save = cv2.cvtColor(image_save, cv2.COLOR_BGR2RGB)
mask_save = (upscaled_masks > 0.5)[0].detach().squeeze(0).cpu().numpy()
mask_save = np.array(mask_save * 255).astype(np.uint8)
mask_save = np.tile(mask_save[:, :, np.newaxis], 3)
_save = np.concatenate((image_save, mask_save), axis=1)
cv2.imwrite("./img_logs_sam/{}_{}.jpg".format(epoch, i), _save)
print(f"EPOCH: {epoch} Mean loss: {mean(epoch_losses)}")
torch.save(sam_model.state_dict(), f"./checkpoints/{epoch}.pth")
if __name__ == "__main__":
main()