-
-
Notifications
You must be signed in to change notification settings - Fork 53
/
bitflyer_btcbox_lag.py
40 lines (31 loc) · 1.35 KB
/
bitflyer_btcbox_lag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import pandas as pd
from matplotlib import pyplot as plt
import lead_lag
def plot_time_series(bitflyer: pd.Series, btcbox: pd.Series) -> None:
d = pd.DataFrame(data={'bitflyer': bitflyer['last'], 'btcbox': btcbox['last']}).ffill().dropna()
slice_d = d['2018-08-12 12:05:30':'2018-08-12 12:08:25']
slice_d['bitflyer'].plot(color='blue', linewidth=2, x_compat=True, legend='b')
slice_d['btcbox'].plot(color='limegreen', linewidth=2, x_compat=True, legend='b')
plt.grid(True)
plt.title('Bitflyer vs Btcbox (2018, on 1s data)')
plt.xlabel('Time')
plt.ylabel('Bitcoin price (Yen)')
plt.show()
def main():
bitflyer = pd.read_csv('../data/bitflyerJPY_2018-08-12_small.csv', parse_dates=True, index_col=0)
btcbox = pd.read_csv('../data/btcboxJPY_2018-08-12_small.csv', parse_dates=True, index_col=0)
plot_time_series(bitflyer, btcbox)
ll = lead_lag.LeadLag(
ts1=bitflyer['last'],
ts2=btcbox['last'],
max_lag=30, # [-X seconds, +X seconds]
verbose=True,
min_precision=0.1 # in seconds.
)
print('Running inference...')
ll.run_inference()
print(f'Estimated lag: {ll.lead_lag} seconds (bitflyer leading).')
print(f'Positive lag means TS1 is leading. LLR: {ll.llr:.2f} (cf. paper for the definition of LLR).')
ll.plot_results()
if __name__ == '__main__':
main()