-
Notifications
You must be signed in to change notification settings - Fork 22
/
collection.go
580 lines (496 loc) · 18 KB
/
collection.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
package chromem
import (
"context"
"errors"
"fmt"
"maps"
"path/filepath"
"slices"
"sync"
)
// Collection represents a collection of documents.
// It also has a configured embedding function, which is used when adding documents
// that don't have embeddings yet.
type Collection struct {
Name string
metadata map[string]string
documents map[string]*Document
documentsLock sync.RWMutex
embed EmbeddingFunc
persistDirectory string
compress bool
// ⚠️ When adding fields here, consider adding them to the persistence struct
// versions in [DB.Export] and [DB.Import] as well!
}
// NegativeMode represents the mode to use for the negative text.
// See QueryOptions for more information.
type NegativeMode string
const (
// NEGATIVE_MODE_FILTER filters out results based on the similarity between the
// negative embedding and the document embeddings.
// NegativeFilterThreshold controls the threshold for filtering. Documents with
// similarity above the threshold will be removed from the results.
NEGATIVE_MODE_FILTER NegativeMode = "filter"
// NEGATIVE_MODE_SUBTRACT subtracts the negative embedding from the query embedding.
// This is the default behavior.
NEGATIVE_MODE_SUBTRACT NegativeMode = "subtract"
// The default threshold for the negative filter.
DEFAULT_NEGATIVE_FILTER_THRESHOLD = 0.5
)
// QueryOptions represents the options for a query.
type QueryOptions struct {
// The text to search for.
QueryText string
// The embedding of the query to search for. It must be created
// with the same embedding model as the document embeddings in the collection.
// The embedding will be normalized if it's not the case yet.
// If both QueryText and QueryEmbedding are set, QueryEmbedding will be used.
QueryEmbedding []float32
// The number of results to return.
NResults int
// Conditional filtering on metadata.
Where map[string]string
// Conditional filtering on documents.
WhereDocument map[string]string
// Negative is the negative query options.
// They can be used to exclude certain results from the query.
Negative NegativeQueryOptions
}
type NegativeQueryOptions struct {
// Mode is the mode to use for the negative text.
Mode NegativeMode
// Text is the text to exclude from the results.
Text string
// Embedding is the embedding of the negative text. It must be created
// with the same embedding model as the document embeddings in the collection.
// The embedding will be normalized if it's not the case yet.
// If both Text and Embedding are set, Embedding will be used.
Embedding []float32
// FilterThreshold is the threshold for the negative filter. Used when Mode is NEGATIVE_MODE_FILTER.
FilterThreshold float32
}
// We don't export this yet to keep the API surface to the bare minimum.
// Users create collections via [Client.CreateCollection].
func newCollection(name string, metadata map[string]string, embed EmbeddingFunc, dbDir string, compress bool) (*Collection, error) {
// We copy the metadata to avoid data races in case the caller modifies the
// map after creating the collection while we range over it.
m := make(map[string]string, len(metadata))
for k, v := range metadata {
m[k] = v
}
c := &Collection{
Name: name,
metadata: m,
documents: make(map[string]*Document),
embed: embed,
}
// Persistence
if dbDir != "" {
safeName := hash2hex(name)
c.persistDirectory = filepath.Join(dbDir, safeName)
c.compress = compress
return c, c.persistMetadata()
}
return c, nil
}
// Add embeddings to the datastore.
//
// - ids: The ids of the embeddings you wish to add
// - embeddings: The embeddings to add. If nil, embeddings will be computed based
// on the contents using the embeddingFunc set for the Collection. Optional.
// - metadatas: The metadata to associate with the embeddings. When querying,
// you can filter on this metadata. Optional.
// - contents: The contents to associate with the embeddings.
//
// This is a Chroma-like method. For a more Go-idiomatic one, see [Collection.AddDocuments].
func (c *Collection) Add(ctx context.Context, ids []string, embeddings [][]float32, metadatas []map[string]string, contents []string) error {
return c.AddConcurrently(ctx, ids, embeddings, metadatas, contents, 1)
}
// AddConcurrently is like Add, but adds embeddings concurrently.
// This is mostly useful when you don't pass any embeddings, so they have to be created.
// Upon error, concurrently running operations are canceled and the error is returned.
//
// This is a Chroma-like method. For a more Go-idiomatic one, see [Collection.AddDocuments].
func (c *Collection) AddConcurrently(ctx context.Context, ids []string, embeddings [][]float32, metadatas []map[string]string, contents []string, concurrency int) error {
if len(ids) == 0 {
return errors.New("ids are empty")
}
if len(embeddings) == 0 && len(contents) == 0 {
return errors.New("either embeddings or contents must be filled")
}
if len(embeddings) != 0 {
if len(embeddings) != len(ids) {
return errors.New("ids and embeddings must have the same length")
}
} else {
// Assign empty slice, so we can simply access via index later
embeddings = make([][]float32, len(ids))
}
if len(metadatas) != 0 {
if len(ids) != len(metadatas) {
return errors.New("when metadatas is not empty it must have the same length as ids")
}
} else {
// Assign empty slice, so we can simply access via index later
metadatas = make([]map[string]string, len(ids))
}
if len(contents) != 0 {
if len(contents) != len(ids) {
return errors.New("ids and contents must have the same length")
}
} else {
// Assign empty slice, so we can simply access via index later
contents = make([]string, len(ids))
}
if concurrency < 1 {
return errors.New("concurrency must be at least 1")
}
// Convert Chroma-style parameters into a slice of documents.
docs := make([]Document, 0, len(ids))
for i, id := range ids {
docs = append(docs, Document{
ID: id,
Metadata: metadatas[i],
Embedding: embeddings[i],
Content: contents[i],
})
}
return c.AddDocuments(ctx, docs, concurrency)
}
// AddDocuments adds documents to the collection with the specified concurrency.
// If the documents don't have embeddings, they will be created using the collection's
// embedding function.
// Upon error, concurrently running operations are canceled and the error is returned.
func (c *Collection) AddDocuments(ctx context.Context, documents []Document, concurrency int) error {
if len(documents) == 0 {
// TODO: Should this be a no-op instead?
return errors.New("documents slice is nil or empty")
}
if concurrency < 1 {
return errors.New("concurrency must be at least 1")
}
// For other validations we rely on AddDocument.
var sharedErr error
sharedErrLock := sync.Mutex{}
ctx, cancel := context.WithCancelCause(ctx)
defer cancel(nil)
setSharedErr := func(err error) {
sharedErrLock.Lock()
defer sharedErrLock.Unlock()
// Another goroutine might have already set the error.
if sharedErr == nil {
sharedErr = err
// Cancel the operation for all other goroutines.
cancel(sharedErr)
}
}
var wg sync.WaitGroup
semaphore := make(chan struct{}, concurrency)
for _, doc := range documents {
wg.Add(1)
go func(doc Document) {
defer wg.Done()
// Don't even start if another goroutine already failed.
if ctx.Err() != nil {
return
}
// Wait here while $concurrency other goroutines are creating documents.
semaphore <- struct{}{}
defer func() { <-semaphore }()
err := c.AddDocument(ctx, doc)
if err != nil {
setSharedErr(fmt.Errorf("couldn't add document '%s': %w", doc.ID, err))
return
}
}(doc)
}
wg.Wait()
return sharedErr
}
// AddDocument adds a document to the collection.
// If the document doesn't have an embedding, it will be created using the collection's
// embedding function.
func (c *Collection) AddDocument(ctx context.Context, doc Document) error {
if doc.ID == "" {
return errors.New("document ID is empty")
}
if len(doc.Embedding) == 0 && doc.Content == "" {
return errors.New("either document embedding or content must be filled")
}
// We copy the metadata to avoid data races in case the caller modifies the
// map after creating the document while we range over it.
m := make(map[string]string, len(doc.Metadata))
for k, v := range doc.Metadata {
m[k] = v
}
// Create embedding if they don't exist, otherwise normalize if necessary
if len(doc.Embedding) == 0 {
embedding, err := c.embed(ctx, doc.Content)
if err != nil {
return fmt.Errorf("couldn't create embedding of document: %w", err)
}
doc.Embedding = embedding
} else {
if !isNormalized(doc.Embedding) {
doc.Embedding = normalizeVector(doc.Embedding)
}
}
c.documentsLock.Lock()
// We don't defer the unlock because we want to do it earlier.
c.documents[doc.ID] = &doc
c.documentsLock.Unlock()
// Persist the document
if c.persistDirectory != "" {
docPath := c.getDocPath(doc.ID)
err := persistToFile(docPath, doc, c.compress, "")
if err != nil {
return fmt.Errorf("couldn't persist document to %q: %w", docPath, err)
}
}
return nil
}
// GetByID returns a document by its ID.
// The returned document is a copy of the original document, so it can be safely
// modified without affecting the collection.
func (c *Collection) GetByID(ctx context.Context, id string) (Document, error) {
if id == "" {
return Document{}, errors.New("document ID is empty")
}
c.documentsLock.RLock()
defer c.documentsLock.RUnlock()
doc, ok := c.documents[id]
if ok {
// Clone the document
res := *doc
// Above copies the simple fields, but we need to copy the slices and maps
res.Metadata = maps.Clone(doc.Metadata)
res.Embedding = slices.Clone(doc.Embedding)
return res, nil
}
return Document{}, fmt.Errorf("document with ID '%v' not found", id)
}
// Delete removes document(s) from the collection.
//
// - where: Conditional filtering on metadata. Optional.
// - whereDocument: Conditional filtering on documents. Optional.
// - ids: The ids of the documents to delete. If empty, all documents are deleted.
func (c *Collection) Delete(_ context.Context, where, whereDocument map[string]string, ids ...string) error {
// must have at least one of where, whereDocument or ids
if len(where) == 0 && len(whereDocument) == 0 && len(ids) == 0 {
return fmt.Errorf("must have at least one of where, whereDocument or ids")
}
if len(c.documents) == 0 {
return nil
}
for k := range whereDocument {
if !slices.Contains(supportedFilters, k) {
return errors.New("unsupported whereDocument operator")
}
}
var docIDs []string
c.documentsLock.Lock()
defer c.documentsLock.Unlock()
if where != nil || whereDocument != nil {
// metadata + content filters
filteredDocs := filterDocs(c.documents, where, whereDocument)
for _, doc := range filteredDocs {
docIDs = append(docIDs, doc.ID)
}
} else {
docIDs = ids
}
// No-op if no docs are left
if len(docIDs) == 0 {
return nil
}
for _, docID := range docIDs {
delete(c.documents, docID)
// Remove the document from disk
if c.persistDirectory != "" {
docPath := c.getDocPath(docID)
err := removeFile(docPath)
if err != nil {
return fmt.Errorf("couldn't remove document at %q: %w", docPath, err)
}
}
}
return nil
}
// Count returns the number of documents in the collection.
func (c *Collection) Count() int {
c.documentsLock.RLock()
defer c.documentsLock.RUnlock()
return len(c.documents)
}
// Result represents a single result from a query.
type Result struct {
ID string
Metadata map[string]string
Embedding []float32
Content string
// The cosine similarity between the query and the document.
// The higher the value, the more similar the document is to the query.
// The value is in the range [-1, 1].
Similarity float32
}
// Query performs an exhaustive nearest neighbor search on the collection.
//
// - queryText: The text to search for. Its embedding will be created using the
// collection's embedding function.
// - nResults: The maximum number of results to return. Must be > 0.
// There can be fewer results if a filter is applied.
// - where: Conditional filtering on metadata. Optional.
// - whereDocument: Conditional filtering on documents. Optional.
func (c *Collection) Query(ctx context.Context, queryText string, nResults int, where, whereDocument map[string]string) ([]Result, error) {
if queryText == "" {
return nil, errors.New("queryText is empty")
}
queryVector, err := c.embed(ctx, queryText)
if err != nil {
return nil, fmt.Errorf("couldn't create embedding of query: %w", err)
}
return c.QueryEmbedding(ctx, queryVector, nResults, where, whereDocument)
}
// QueryWithOptions performs an exhaustive nearest neighbor search on the collection.
//
// - options: The options for the query. See [QueryOptions] for more information.
func (c *Collection) QueryWithOptions(ctx context.Context, options QueryOptions) ([]Result, error) {
if options.QueryText == "" && len(options.QueryEmbedding) == 0 {
return nil, errors.New("QueryText and QueryEmbedding options are empty")
}
var err error
queryVector := options.QueryEmbedding
if len(queryVector) == 0 {
queryVector, err = c.embed(ctx, options.QueryText)
if err != nil {
return nil, fmt.Errorf("couldn't create embedding of query: %w", err)
}
}
negativeFilterThreshold := options.Negative.FilterThreshold
negativeVector := options.Negative.Embedding
if len(negativeVector) == 0 && options.Negative.Text != "" {
negativeVector, err = c.embed(ctx, options.Negative.Text)
if err != nil {
return nil, fmt.Errorf("couldn't create embedding of negative: %w", err)
}
}
if len(negativeVector) != 0 {
if !isNormalized(negativeVector) {
negativeVector = normalizeVector(negativeVector)
}
if options.Negative.Mode == NEGATIVE_MODE_SUBTRACT {
queryVector = subtractVector(queryVector, negativeVector)
queryVector = normalizeVector(queryVector)
} else if options.Negative.Mode == NEGATIVE_MODE_FILTER {
if negativeFilterThreshold == 0 {
negativeFilterThreshold = DEFAULT_NEGATIVE_FILTER_THRESHOLD
}
} else {
return nil, fmt.Errorf("unsupported negative mode: %q", options.Negative.Mode)
}
}
result, err := c.queryEmbedding(ctx, queryVector, negativeVector, negativeFilterThreshold, options.NResults, options.Where, options.WhereDocument)
if err != nil {
return nil, err
}
return result, nil
}
// QueryEmbedding performs an exhaustive nearest neighbor search on the collection.
//
// - queryEmbedding: The embedding of the query to search for. It must be created
// with the same embedding model as the document embeddings in the collection.
// The embedding will be normalized if it's not the case yet.
// - nResults: The maximum number of results to return. Must be > 0.
// There can be fewer results if a filter is applied.
// - where: Conditional filtering on metadata. Optional.
// - whereDocument: Conditional filtering on documents. Optional.
func (c *Collection) QueryEmbedding(ctx context.Context, queryEmbedding []float32, nResults int, where, whereDocument map[string]string) ([]Result, error) {
return c.queryEmbedding(ctx, queryEmbedding, nil, 0, nResults, where, whereDocument)
}
// queryEmbedding performs an exhaustive nearest neighbor search on the collection.
func (c *Collection) queryEmbedding(ctx context.Context, queryEmbedding, negativeEmbeddings []float32, negativeFilterThreshold float32, nResults int, where, whereDocument map[string]string) ([]Result, error) {
if len(queryEmbedding) == 0 {
return nil, errors.New("queryEmbedding is empty")
}
if nResults <= 0 {
return nil, errors.New("nResults must be > 0")
}
c.documentsLock.RLock()
defer c.documentsLock.RUnlock()
if nResults > len(c.documents) {
return nil, errors.New("nResults must be <= the number of documents in the collection")
}
if len(c.documents) == 0 {
return nil, nil
}
// Validate whereDocument operators
for k := range whereDocument {
if !slices.Contains(supportedFilters, k) {
return nil, errors.New("unsupported operator")
}
}
// Filter docs by metadata and content
filteredDocs := filterDocs(c.documents, where, whereDocument)
// No need to continue if the filters got rid of all documents
if len(filteredDocs) == 0 {
return nil, nil
}
// Normalize embedding if not the case yet. We only support cosine similarity
// for now and all documents were already normalized when added to the collection.
if !isNormalized(queryEmbedding) {
queryEmbedding = normalizeVector(queryEmbedding)
}
// If the filtering already reduced the number of documents to fewer than nResults,
// we only need to find the most similar docs among the filtered ones.
resLen := nResults
if len(filteredDocs) < nResults {
resLen = len(filteredDocs)
}
// For the remaining documents, get the most similar docs.
nMaxDocs, err := getMostSimilarDocs(ctx, queryEmbedding, negativeEmbeddings, negativeFilterThreshold, filteredDocs, resLen)
if err != nil {
return nil, fmt.Errorf("couldn't get most similar docs: %w", err)
}
res := make([]Result, 0, len(nMaxDocs))
for i := 0; i < len(nMaxDocs); i++ {
res = append(res, Result{
ID: nMaxDocs[i].docID,
Metadata: c.documents[nMaxDocs[i].docID].Metadata,
Embedding: c.documents[nMaxDocs[i].docID].Embedding,
Content: c.documents[nMaxDocs[i].docID].Content,
Similarity: nMaxDocs[i].similarity,
})
}
return res, nil
}
// getDocPath generates the path to the document file.
func (c *Collection) getDocPath(docID string) string {
safeID := hash2hex(docID)
docPath := filepath.Join(c.persistDirectory, safeID)
docPath += ".gob"
if c.compress {
docPath += ".gz"
}
return docPath
}
// persistMetadata persists the collection metadata to disk
func (c *Collection) persistMetadata() error {
// Persist name and metadata
metadataPath := filepath.Join(c.persistDirectory, metadataFileName)
metadataPath += ".gob"
if c.compress {
metadataPath += ".gz"
}
pc := struct {
Name string
Metadata map[string]string
}{
Name: c.Name,
Metadata: c.metadata,
}
err := persistToFile(metadataPath, pc, c.compress, "")
if err != nil {
return err
}
return nil
}