Skip to content

Latest commit

 

History

History
244 lines (169 loc) · 7.81 KB

README.md

File metadata and controls

244 lines (169 loc) · 7.81 KB

dseGraphFrameLoad: DSE Graph Frames Loader

This project walks through how to load graph data using DSE Graph Frames with Spark. The following topics are covered:

  1. How to run this code
  2. Create a Graph Model
  3. Creating the Vertex DataSet
  4. Creating the Edge DataSet
  5. Using MlLib to add features to the graph

DSE Graph Frames - Background

The DSE Graph Frames package is a Scala/Java API written to better integrate with DSE Graph. Navigate to the link to learn more.

A. Set-Up

1. Pre Requisites

This project was designed for use with DSE 6.0. If the DSE 6.0 jars are not yet publically available, you will have to follow the instructions in [this DSE 6.0 EAP installation guide,] located in this repository in the resources directory.

Moving forward, this README assumes you have successfully set up DSE 6.0.

2. Build

Clone this repository on a machine in an environment you have cloning access:

$ git clone https://github.com/pmehra7/dseGraphFrameLoad.git

Navigate to the parent directory and build this project:

$ cd dseGraphFrameLoad/
$ mvn clean install

Note: If the DSE6 repo is not in the Maven Repo, go to the dseGraphFrameLoad/src/main/resources/ directory and follow the instructions in dse-eap6-dep.txt to install the dependancies.

The error might look like:

[ERROR] Failed to execute goal on project dseGraphFrames: Could not resolve dependencies for project 

3. Download Data

Download the data from Kaggle: https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data and download the following files:

transactions.csv
offers.csv 
trainHistory.csv

B. How to Run

1. Start DSE

  1. In a new terminal window, navigate to your installation of DSE 6.0
$ cd ~/path/to/dse-6.0.0/
  1. Start DSE with graph, search, and spark enabled (assuming that you are using a single node tarball version of DSE):
$ ./bin/dse cassandra -k -s -g

2. Load Data into DSEFS

$ dse fs
$ mkdir data
$ put /path/to/transactions.csv /data/
$ put /path/to/offers.csv /data/
$ put /path/to/trainHistory.csv /data/

3. Create Graph Schema

3.a: Gremlin Console

Use gremlin console to create the graph and insert the schema:

$ dse gremlin-console -e /path/to/dseGraphFrameLoad/blob/master/src/main/resources/schema.groovy

3.b: DSE Studio Notebook

Instead of using the gremlin console, you can:

  1. Install and open a DSE Studio Notebook
  2. Create a new graph configuration through the Studio UI
  3. Copy and paste the schema creation statements from the schema.groovy file into a studio cell
  4. Execute the code against the server from studio

4. Run Spark Job

The spark job reads the downloaded Kaggle data files from DSEFS, builds the required dataset, and loads the data into DSE Graph via the DataStax GraphFrames. To understand how to use DSE GraphFrames, please read DSE Graph Frames.

Submit the spark job with:

$ dse spark-submit --class com.spark.graphframes.App dseGraphFrames-1.0-SNAPSHOT.jar

I used the following spark submit parameters on m4.4xlarge machines:

$ dse spark-submit --executor-memory=22G --class com.spark.graphframes.App dseGraphFrames-1.0-SNAPSHOT.jar 

C. Graph Model

1. Schema Description

Here is a diagram showing the graph's schema:

image

Bold: Partition Key

Italic: Clustering Column

2. Vertices:

Each vertex label is a column in this table; the properties avaiable on the vertex are indicated via the rows.

Product Customer Store Offer
chain customer_id chain offer
company market category
brand quantity
dept company
category offervalue
productsize brand
productmeasure
purchasequantity
purchaseamount
customer_id
date

3. Edges:

Each edge label is a column in this table; the properties avaiable on the vertex are indicated via the rows.

visits offer_used purchases
date date date
repeater purchasequantity
repeattrips purchaseamount

D. Vertices Dataset

The first key to understanding how to use DSE Graph Frames is to examine the vertex dataset. A vertex dataset requires a column called ~label all parts of the primary key to be present as columns in the dataset.

For example, to create a dataset for offers with the desired columns from the offer.csv file:

For example:

    val offers = offer.select(
      col("offer") as "offer",
      col("category"),
      col("quantity"),
      col("company"),
      col("offervalue"),
      col("brand")
    ).withColumn("~label", lit("offer"))

Here we created a dataset for the offer vertex with the label offer. Notice how this matches what is defined in your schema:

image

E. Edges Dataset

The trickiest key to understanding how to use DSE Graph Frames is to examine the edge dataset. An edge dataset requires:

  1. A column called ~label
  2. A column called src
  3. A column called dst

To create an Edge DataSet for Customer --> Store, we start by extracting following columns from transactions.csv: srcLabel, dstLabel, edgeLabel.

srcLabel: the label of the originating vertex (in this schema it is customer) dstLabel: the label of the destination vertex (in this schema it is store) edgeLabel: the label of the edge (in this schema it is visits)

For example:

    val txEdge = transactions.withColumn("srcLabel", lit("customer"))
    .withColumnRenamed("id", "customer_id")
    .withColumn("dstLabel", lit("store"))
    .withColumn("edgeLabel", lit("visits"))

Here we create the edge DataSet that will be written to the graph. We use a DSE GraphFrames method that takes the srcLabel and primary key values of the source vertex, Customer, to create the src value for the given edge. The same is done for the dstLabel. After, we select the edge label and the edge property columns.

    val custToStore = txEdge.select(
    g.idColumn(col("srcLabel"), col("customer_id")) as "src", 
    g.idColumn(col("dstLabel"), col("chain")) as "dst", 
    col("edgeLabel") as "~label", 
    col("date") as "date")

Graph Frames idColumn() helper function

idColumn() is a helper function. Let's run through this example for customer 86246 to see what it is doing. In the spark repl:

$ /navigate/to/dse6.0/
$ dse spark
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.2.0.10
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_144)
Type in expressions to have them evaluated.
Type :help for more information.

scala> custToStore.select("src").limit(1) 

The result is some seemingly arbitary value like: *customer:AAAACTEwMzk4NTI0Ng==*. This is a Spark/DSE Graph Frames id that is created based off of the customer_e primary key. The dst value is calculated in a similar way. Then the ~label value, visits, is added to the DataSet and then the edge properties (which in this case is just the date) are added.