diff --git a/lectures/2020-05-14.tex b/lectures/2020-05-14.tex index fb369f3..6fe4ff4 100644 --- a/lectures/2020-05-14.tex +++ b/lectures/2020-05-14.tex @@ -367,5 +367,39 @@ \section{Non-linear Systems} Since these regressors are obtained by integration to avoid drifting (by DC components of noise integration) we have to high-pass the inputs with high-pass filters ($\frac{z-1}{z-a}$). \paragraph{Full filtering scheme} \phantom{lol} - \missingfigure{Fig1} + \begin{figure}[H] + \centering + \begin{tikzpicture}[node distance=2cm,auto,>=latex'] + \draw[int, dashed border] (0.5,-0.5) rectangle ++(5.5,6); + \node[int, double border, minimum width=1.5cm, minimum height=6cm] at (8,2.5) (f) {$f(\cdot, \theta)$}; + \node[left] at (0,0) (c) {$c(t)$}; + \node[left] at (0,3) (d) {$z-z_d$}; + \node[left] at (0,5) (z) {$\ddot{z}$}; + \node[sum] at (2,0) (mult) {$\times$}; + \node[int] at (2,1.5) (d1) {$\frac{z-1}{z}$}; + \node[int] at (3.5,0) (d2) {$\frac{z-1}{z-a}$}; + \node[int] at (5,0) (d3) {$\frac{1}{z-1}$}; + \node[int] at (3.5,3) (d4) {$\frac{z-1}{z-a}$}; + \node[int] at (5,3) (d5) {$\frac{1}{z-1}$}; + \node[int] at (3.5,5) (d6) {$\frac{z-1}{z-a}$}; + \node[int] at (5,5) (d7) {$\frac{1}{z-1}$}; + + \node[below] at (3,-0.7) {regressors building block}; + + \draw[->] (c) -- (mult); + \draw[->] (d1) -- (mult); + \draw[->] (mult) -- (d2); + \draw[->] (d2) -- (d3); + \draw[->] (z) -- (d6); + \draw[->] (d6) -- (d7); + \draw[->] (d) -- (d4); + \draw[->] (d4) -- (d5); + \draw[->] (d) -| (d1); + + \draw[->] (d7) -- (d7-|f.west) node[pos=0.7] {$r_3(t)$}; + \draw[->] (d5) -- (d5-|f.west) node[pos=0.7] {$r_1(t)$}; + \draw[->] (d3) -- (d3-|f.west) node[pos=0.7] {$r_2(t)$}; + \draw[->] (f) -- (9.5,2.5) node[right] {$\hat{\dot{z}}$}; + \end{tikzpicture} + \end{figure} \end{exercise} diff --git a/lectures/2020-05-18.tex b/lectures/2020-05-18.tex index 759d5a5..8f34e9a 100644 --- a/lectures/2020-05-18.tex +++ b/lectures/2020-05-18.tex @@ -73,7 +73,35 @@ \section{Using Kalman Filter} It is a $n_\theta\times n_\theta$ and usually it is assumed that $\lambda_{1\theta}^2=\lambda_{2\theta}^2=\dots=\lambda_{n_\theta\theta}^2$. We assume that $v_\theta(t)$ is a set of independent W.N. all with the same variance $\lambda_\theta^2$ (tuned empirically). -\missingfigure{Fig2} +\begin{figure}[H] + \centering + \begin{tikzpicture}[ + node distance=2cm,auto,>=latex', + declare function={ + f1(\x) = (\x < 2) * (\x/2*(3-1)) + + (\x >= 2) * (3-1) + + (\x > 0.2) * rand/2.5 + + 1; + f2(\x) = (\x < 4.5) * (\x/4.5*(3-1)) + + (\x >= 4.5) * (3-1) + + (\x > 0.2) * rand/15 + + 1; + } + ] + \draw[->] (0,0) -- (6,0) node[below] {$t$}; + \draw[->] (0,0) -- (0,4) node[left] {$\theta$}; + + \node[green] at (2.3,1.5) {\footnotesize small $\lambda_\theta^2$}; + \node[blue] at (2.3,3.7) {\footnotesize big $\lambda_\theta^2$}; + + \draw[dotted] (6,3) -- (0,3) node[left] {$\overline{\theta}$}; + \draw[domain=0:5.5,smooth,variable=\x,blue,samples=70] plot ({\x},{f1(\x)}); + \draw[domain=0:5.5,smooth,variable=\x,green,samples=70] plot ({\x},{f2(\x)}); + + \draw[mark=*] plot coordinates {(0,1)} node[left, align=right] {Initial\\condition}; + \end{tikzpicture} + \caption*{Influence of choice of $\lambda_\theta^2$} +\end{figure} With a small value of $\lambda_\theta^2$ there is a slow convergence with small oscillations (noise) at steady-state (big trust to initial conditions). With large values of $\lambda_\theta^2$ there's fast convergence but noisy at steady-state. @@ -84,15 +112,37 @@ \section{Using Kalman Filter} In practice it works well only on a limited number of parameters (e.g. 3 sensors, 5 states and 2 parameters). \begin{example} - \missingfigure{Fig3} + \begin{figure}[H] + \centering + \begin{tikzpicture}[node distance=2cm,auto,>=latex'] + \draw (0,0) -- (6,0); + \draw[pattern=north east lines] (0,0) rectangle (-0.5,2); + \draw[] (2,0) rectangle (4,1.5); + \node at (3,0.75) {$M$}; + \draw[decoration={aspect=0.3, segment length=1mm, amplitude=2mm,coil},decorate] (0.5,0.75) -- (1.5,0.75); + \draw (0,0.75) -- (0.5,0.75); + \draw (1.5,0.75) -- (2,0.75); + \draw[->] (4,0.75) -- (5,0.75) node[right] {$F$}; + \fill[pattern=north east lines] (1.8,0) rectangle ++(2.4,-0.1) node[above right] {\footnotesize friction $c$}; + \draw[->] (3,-0.5) -- (4,-0.5) node[right] {$x$}; + \draw (3,-0.55) -- (3,-0.45); + \end{tikzpicture} + \end{figure} \begin{description} \item[Input] $F(t)$ \item[Output] Position $x(t)$ (measured) - \item[Parameters] $K$ and $M$ are known (measured), $c$ is unknown` + \item[Parameters] $K$ and $M$ are known (measured), $c$ is unknown \end{description} - \missingfigure{Fig4} + \begin{figure}[H] + \centering + \begin{tikzpicture}[node distance=2cm,auto,>=latex'] + \node[int,align=center] at (0,0) (s) {system\\$c = ?$}; + \draw[<-] (s) -- ++(-1.5,0) node[left] {$F(t)$}; + \draw[->] (s) -- ++(1.5,0) node[right] {$x(t)$}; + \end{tikzpicture} + \end{figure} \paragraph{Problem} Estimate $c$ with a K.F.