This repository has been archived by the owner on May 6, 2020. It is now read-only.
forked from osuthailand/LETS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tomejerry-relax.py
executable file
·617 lines (523 loc) · 22.6 KB
/
tomejerry-relax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
import argparse
import logging
import math
import sys
import traceback
import warnings
from collections import namedtuple
from typing import Iterable, Optional, Union, List, Dict, Any
import os
import threading
import time
import json
import MySQLdb.cursors
import progressbar
from abc import abstractmethod, ABC
from enum import Enum, IntEnum
from progressbar import DynamicMessage, FormatLabel
from objects import beatmap
from objects import scoreRelax
from common.db import dbConnector
from helpers import config
from objects import glob
MAX_WORKERS = 32
UNIX = os.name == "posix"
FAILED_SCORES_LOGGER = None
RecalculatorQuery = namedtuple("RecalculatorQuery", "query parameters")
class WorkerStatus(IntEnum):
NOT_STARTED = 0
RECALCULATING = 1
SAVING = 2
DONE = 3
class LwScore:
"""
A lightweight score object, that can hold score id and pp only
"""
__slots__ = ("score_id", "pp")
def __init__(self, score_id: Optional[int]=None, pp: Optional[int]=None, score_: Optional[scoreRelax.score]=None):
"""
Initializes a new LwScore. Either score_id and pp OR just score must be provided.
:param score_id: id of the score. Optional.
:param pp: pp. Optional.
:param score_: score object. Optional.
"""
if score_ is not None:
self.score_id = score_.scoreID
self.pp = score_.pp
elif score_id is not None and pp is not None:
self.score_id = score_id
self.pp = pp
else:
raise RuntimeError("")
class Recalculator(ABC):
"""
Base PP Recalculator
"""
def __init__(self, ids_query: RecalculatorQuery, count_query: RecalculatorQuery):
"""
Instantiates a new recalculator
:param ids_query: `RecalculatorQuery` that fetches the `id`s of the scores of which pp will be recalculated
:param count_query: `RecalculatorQuery` that counts the _total_ number of the scoresof which pp will be
recalculated
"""
self.ids_query: RecalculatorQuery = ids_query
self.count_query: RecalculatorQuery = count_query
@abstractmethod
def offset_ids_query(self, limit: int, offset: int) -> RecalculatorQuery:
"""
Returns a new `RecalculatorQuery` based on `self.ids_query`, but based with LIMIT and OFFSET.
Will be run by each worker to get their scores_relax.
:param limit: LIMIT value
:param offset: OFFSET value
:return: `RecalculatorQuery` with LIMIT and OFFSET
"""
raise NotImplementedError()
class SimpleRecalculator(Recalculator):
"""
A simple recalculator that can use a set of simple conditions, joined with logic ANDs
"""
def __init__(
self,
conditions: Union[Iterable[str], str],
parameters: Optional[Union[Iterable[str], Dict[str, Any]]]=None
):
"""
Initializes a new SimpleRecalculator
:param conditions: The conditions that will be joined with login ANDs.
They can be:
* an iterable (list, tuple, ...) of str (multiple conditions)
* str (one condition)
:param parameters: Iterable (list, tuple, ...) or dict that contains the query's parameters.
These will be passed to MySQLdb to bind the query's parameters (%s and %(name)s)
"""
if type(conditions) is list or type(conditions) is tuple:
conditions_str = " AND ".join(conditions)
elif type(conditions) is str:
conditions_str = conditions
else:
raise TypeError("`conditions` must be either a `str`, `tuple` or `list`")
q = "SELECT {} FROM scores_relax JOIN beatmaps USING(beatmap_md5) WHERE {} ORDER BY scores_relax.id DESC"
super(SimpleRecalculator, self).__init__(
ids_query=RecalculatorQuery(q.format("scores_relax.id AS id", conditions_str), parameters),
count_query=RecalculatorQuery(q.format("COUNT(*) AS c", conditions_str), parameters)
)
def offset_ids_query(self, limit: int, offset: int) -> str:
return self.ids_query.query + " LIMIT {} OFFSET {}".format(limit, offset)
class ScoreIdsPool:
"""
Pool of score ids that needs to be recalculated.
"""
logger = logging.getLogger("score_ids_pool")
def __init__(self):
"""
Initializes a new pool
"""
self._lock = threading.RLock()
self.scores = []
def load(self, recalculator: Recalculator):
"""
Loads score ids in the pool from a Recalculator instance
:param recalculator: The recalculator instance that will be used to fetch the score ids
:return:
"""
with self._lock:
query_result = glob.db.fetchAll(recalculator.ids_query.query, recalculator.ids_query.parameters)
self.scores += [LwScore(x["id"], 0) for x in query_result]
self.logger.debug("Loaded {} scores".format(len(self.scores)))
def chunk(self, chunk_size: int) -> List[int]:
"""
Returns a chunk of score ids of the specified size, and removes the chunk from the pool.
:param chunk_size: size of the chunk
:return: score ids list
"""
with self._lock:
chunked_scores = self.scores[:chunk_size]
self.scores = self.scores[chunk_size:]
self.logger.debug("Chunked {} scores_relax. Current scores in pool: {}".format(chunk_size, len(self.scores)))
return chunked_scores
@property
def is_empty(self):
"""
Whether the pool is empty or not
:return: `True` if the pool is empty else `False`
"""
return not bool(self.scores)
class Worker:
"""
A tomejerry worker. Recalculates pp for a set of scores_relax.
"""
score_ids_pool = ScoreIdsPool()
def __init__(self, chunk_size: int, worker_id: int=-1, start: bool=True):
"""
Initializes a new worker.
:param chunk_size: Number of scores to process
:param worker_id: This worker's id. Optional. Default: -1.
:param start: Whether to start the worker immediately or not
:param
"""
self.worker_id: int = worker_id
self.thread: threading.Thread = None
self.logger: logging.Logger = logging.getLogger("w{}".format(worker_id))
self.recalculated_scores_count: int = 0
self.saved_scores_count: int = 0
self.chunk_size: int = chunk_size
self.scores: List[LwScore] = self.score_ids_pool.chunk(self.chunk_size)
self.status: WorkerStatus = WorkerStatus.NOT_STARTED
self.failed_scores: int = 0
if start:
self.threaded_work()
def recycle(self, start: bool=True):
"""
Recycles this worker with a new chunk of scores
:param start: Whether to start the worker immediately or not
:return:
"""
if self.thread.is_alive():
raise RuntimeError("The thread is still alive")
del self.thread
self.thread = None
self.status = WorkerStatus.NOT_STARTED
self.scores = self.score_ids_pool.chunk(self.chunk_size)
self.logger.debug("Recycled with {} new scores".format(self.chunk_size))
if start:
self.threaded_work()
def recalc_score(self, score_data: Dict) -> scoreRelax:
"""
Recalculates pp for a score
:param score_data: dict containing score and beatmap information about a score.
:return: new `score` object, with `pp` attribute set to the new value
"""
# Create score object and set its data
s: scoreRelax.score = scoreRelax.score()
s.setDataFromDict(score_data)
s.passed = True
# Create beatmap object and set its data
b: beatmap.beatmap = beatmap.beatmap()
b.setDataFromDict(score_data)
# Calculate score pp
s.calculatePP(b)
del b
return s
def _work(self):
"""
Run worker's work. Fetches scores, recalculates pp and saves the results in the database.
:return:
"""
# Make sure the worker hasn't been disposed
if self.status == WorkerStatus.DONE:
raise RuntimeError("This worker has been disposed")
self.logger.info("Started worker. Assigned {} scores".format(self.chunk_size))
try:
# Recalculate all pp and save results in memory using LwScore objects
self.recalculate_pp()
# Store the new pp values permanently in the database
self.save_recalculations()
finally:
# Mark the worker as disposed at the end
self.logger.debug("Disposing worker")
self.status = WorkerStatus.DONE
def recalculate_pp(self):
"""
Recalculates the pp and saves results in memory
:return:
"""
# We cannot use a SSDictCursor directly, because the connection will time out
# if the cursor doesn't consume every result before the `wait_timeout`, which is
# 600 seconds in MariaDB's default configuration. This means that we have to recalculate
# PPs for all scores in no more than 600 seconds, or we'll get a 'MySQL server has
# gone away error'. Fetching every score (joined with the respective beatmap)
# directly would take up too much RAM, so we fetch all the score_ids at the
# beginning with one query, store them in memory and fetch the data for
# each score, one by one, using the same connection (to avoid pool overhead)
self.status = WorkerStatus.RECALCULATING
# self.recalculated_scores_count = 0
# Fetch all score_ids
# self.scores = [LwScore(x["id"], 0) for x in glob.db.fetchAll(self.ids_query.query, self.ids_query.parameters)]
# Get a db worker
cursor = None
db_worker = glob.db.pool.getWorker()
if db_worker is None:
self.logger.warning("Cannot fetch scores_relax. No database worker available!!")
return
try:
# Get a cursor (normal DictCursor)
cursor = db_worker.connection.cursor(MySQLdb.cursors.DictCursor)
for i, lw_score in enumerate(self.scores):
if i % self.log_every == 0:
self.logger.debug("Processed {}/{} scores".format(i, self.chunk_size))
# Fetch score and beatmap data for this id
cursor.execute(
"SELECT * FROM scores_relax JOIN beatmaps USING(beatmap_md5) WHERE scores_relax.id = %s LIMIT 1",
(lw_score.score_id,)
)
score_ = cursor.fetchone()
try:
# Recalculate pp
recalculated_score = self.recalc_score(score_)
if recalculated_score is not None:
# New score returned, store new pp in memory
self.scores[i].pp = recalculated_score.pp
if recalculated_score.pp == 0:
# PP calculator error
self.log_failed_score(score_, "0 pp")
# Mark for garbage collection
del score_
del recalculated_score
except Exception as e:
self.log_failed_score(score_, str(e), traceback_=True)
finally:
self.recalculated_scores_count += 1
finally:
# Close cursor and connection
if cursor is not None:
cursor.close()
if db_worker is not None:
glob.db.pool.putWorker(db_worker)
self.logger.debug("PP Recalculated")
def save_recalculations(self):
"""
Saves the recalculated performance points in the database
:return:
"""
self.status = WorkerStatus.SAVING
# self.saved_scores_count = 0
# Make sure we've at least fetched the scores
if not self.scores:
self.logger.warning("No scores to update.")
return
# Update db
self.logger.debug("Updating scores in database")
for i, lw_score in enumerate(self.scores):
if i % self.log_every == 0:
self.logger.debug("Updated {}/{} scores".format(i, self.chunk_size))
glob.db.execute("UPDATE scores_relax SET pp = %s WHERE id = %s LIMIT 1", (lw_score.pp, lw_score.score_id))
self.saved_scores_count += 1
self.logger.debug("Scores updated")
@property
def log_every(self) -> int:
"""
Number of scores that have to be processed before logging the worker's status
:return:
"""
return max(min((self.chunk_size // 3), 1000), 1)
def threaded_work(self):
"""
Starts this worker's work in a new thread
:return:
"""
self.thread = threading.Thread(target=self._work)
self.thread.start()
def log_failed_score(self, score_: Dict[str, Any], additional_information: str="", traceback_: bool=False):
"""
Logs a failed score.
:param score_: score dict (from db) that triggered the error
:param additional_information: additional information (type of error)
:param traceback_: Whether the traceback should be logged or not.
It should be `True` if the logging was triggered by an unhandled exception
:return:
"""
msg = ""
if traceback_:
msg = "\n\n\nUnhandled exception: {}\n{}".format(sys.exc_info(), traceback.format_exc())
msg += "score_id:{} ({})".format(score_["id"], additional_information).strip()
FAILED_SCORES_LOGGER.error(msg)
self.failed_scores += 1
def mass_recalc(recalculator: Recalculator, workers_number: int=MAX_WORKERS, chunk_size: Optional[int]=None):
"""
Recalculate performance points for a set of scores, using multiple workers
:param recalculator: the recalculator that will be used
:param workers_number: the number of workers to spawn
:return:
"""
start_time = time.time()
global FAILED_SCORES_LOGGER
workers = []
logging.info("Query: {} ({})".format(recalculator.ids_query.query, recalculator.ids_query.parameters))
# Fetch the total number of scores
total_scores = glob.db.fetch(recalculator.count_query.query, recalculator.count_query.parameters)
if total_scores is None:
logging.warning("No scores to recalc.")
return
# Set up failed scores logger (creates file too)
FAILED_SCORES_LOGGER = logging.getLogger("failed_scores")
FAILED_SCORES_LOGGER.addHandler(
logging.FileHandler("tomejerry-relax_failed_scores_{}.log".format(time.strftime("%d-%m-%Y--%H-%M-%S")))
)
# Get the number of total scores from the result dict
total_scores = total_scores[next(iter(total_scores))]
logging.info("Total scores: {}".format(total_scores))
if total_scores == 0:
return
# for some reason `typing` believes that `math.ceil` returns a `float`, so we need an extra cast here...
scores_per_worker = int(math.ceil(total_scores / workers_number))
logging.info("Using {} workers and {} scores per worker".format(workers_number, scores_per_worker))
# Load score ids in the pool
logging.info("Filling score ids pool")
Worker.score_ids_pool.load(recalculator)
# Spawn the workers and start them
for i in range(workers_number):
workers.append(
Worker(
chunk_size=chunk_size
if chunk_size is not None
else len(Worker.score_ids_pool.scores) // workers_number // 3,
worker_id=i,
start=True
)
)
# Progress bar loop
steps_text = {
WorkerStatus.NOT_STARTED: "Starting workers",
WorkerStatus.RECALCULATING: "Recalculating pp",
WorkerStatus.SAVING: "Updating db"
}
recycles = 0
widgets = [
"[ ", "Starting", " ]",
"w_pp:<>", "w_db:<>", "w_done:<>", "rec:0",
progressbar.FormatLabel(" %(value)s/%(max)s "),
progressbar.Bar(marker="#", left="[", right="]", fill="."),
progressbar.Percentage(),
" (", progressbar.ETA(), ") "
]
with progressbar.ProgressBar(
widgets=widgets,
max_value=total_scores,
redirect_stdout=True,
redirect_stderr=True
) as bar:
while True:
lowest_status = min([x.status for x in workers])
# Loop through all workers to get progress value
total_progress_value = sum(
[
x.recalculated_scores_count if lowest_status != WorkerStatus.SAVING else x.saved_scores_count
for x in workers
]
)
# Recycle the workers if needed
workers_done = [x for x in workers if x.status == WorkerStatus.DONE]
if workers_done and not Worker.score_ids_pool.is_empty:
logging.info("Recycling workers")
recycles += 1
for worker in workers_done:
worker.recycle(start=True)
# Output total status information
widgets[1] = steps_text.get(lowest_status, "...")
widgets[3] = " w_pp:<{}/{}>".format(
len([x for x in workers if x.status == WorkerStatus.RECALCULATING]), len(workers)
)
widgets[4] = " w_db:<{}/{}>".format(
len([x for x in workers if x.status == WorkerStatus.SAVING]), len(workers)
)
widgets[5] = " w_done:<{}/{}>".format(len(workers_done), len(workers))
widgets[6] = " rec:{}".format(recycles)
bar.update(total_progress_value)
# Exit from the loop if every worker has finished its work
if len(workers_done) == len(workers):
break
# Wait 0.5 s and update the progress bar again
time.sleep(0.5)
# Recalc done. Print some stats
end_time = time.time()
failed_scores = sum([x.failed_scores for x in workers])
logging.info(
"\n\nDone!\n"
":: Recalculated\t{} scores\n"
":: Failed\t{} scores\n"
":: Total\t{} scores\n\n"
":: Took\t{:.2f} seconds".format(
total_scores - failed_scores,
failed_scores,
total_scores,
end_time - start_time
)
)
def main():
# CLI stuff
parser = argparse.ArgumentParser(description="pp recalc tool for ripple, new version.")
recalc_group = parser.add_mutually_exclusive_group(required=False)
recalc_group.add_argument(
"-r", "--recalc", help="calculates pp for all high scores", required=False, action="store_true"
)
recalc_group.add_argument(
"-z", "--zero", help="calculates pp for 0 pp high scores", required=False, action="store_true"
)
recalc_group.add_argument("-i", "--id", help="calculates pp for the score with this score_id", required=False)
recalc_group.add_argument(
"-m", "--mods", help="calculates pp for high scores with these mods (flags)", required=False
)
recalc_group.add_argument(
"-g", "--gamemode", help="calculates pp for scores played on this game mode (std:0, taiko:1, ctb:2, mania:3)",
required=False
)
recalc_group.add_argument(
"-u", "--userid", help="calculates pp for high scores set by a specific user (user_id)", required=False
)
recalc_group.add_argument(
"-b", "--beatmapid", help="calculates pp for high scores played on a specific beatmap (beatmap_id)", required=False
)
recalc_group.add_argument(
"-fhd", "--fixstdhd", help="calculates pp for std hd high scores (14/05/2018 pp algorithm changes)",
required=False, action="store_true"
)
parser.add_argument("-w", "--workers", help="number of workers. {} by default. Max {}".format(
MAX_WORKERS // 2, MAX_WORKERS
), required=False)
parser.add_argument("-cs", "--chunksize", help="score chunks size", required=False)
parser.add_argument("-v", "--verbose", help="verbose/debug mode", required=False, action="store_true")
args = parser.parse_args()
# Logging
progressbar.streams.wrap_stderr()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
logging.info("Running under {}".format("UNIX" if UNIX else "WIN32"))
# Load config
logging.info("Reading config file")
glob.conf = config.config("config.ini")
# Get workers from arguments if set
workers_number = MAX_WORKERS // 2
if args.workers is not None:
workers_number = int(args.workers)
# Get chunk size from arguments if set
chunk_size = None
if args.chunksize is not None:
chunk_size = int(args.chunksize)
# Disable MySQL db warnings (it spams 'Unsafe statement written to the binary log using statement...'
# because we use UPDATE with LIMIT 1 when updating performance points after recalculation
warnings.filterwarnings("ignore", category=MySQLdb.Warning)
# Connect to MySQL
logging.info("Connecting to MySQL db")
glob.db = dbConnector.db(
glob.conf.config["db"]["host"],
glob.conf.config["db"]["username"],
glob.conf.config["db"]["password"],
glob.conf.config["db"]["database"],
max(workers_number, MAX_WORKERS)
)
# Set verbose
glob.debug = args.verbose
# Get recalculator
recalculators_gen = {
"zero": lambda: SimpleRecalculator(("scores_relax.completed = 3", "pp = 0")),
"recalc": lambda: SimpleRecalculator(("scores_relax.completed = 3",)),
"mods": lambda: SimpleRecalculator(("scores_relax.completed = 3", "mods & %s > 0"), (args.mods,)),
"id": lambda: SimpleRecalculator(("scores_relax.id = %s",), (args.id,)),
"gamemode": lambda: SimpleRecalculator(("scores_relax.completed = 3", "scores_relax.play_mode = %s",), (args.gamemode,)),
"userid": lambda: SimpleRecalculator(("scores_relax.completed = 3", "scores_relax.userid = %s",), (args.userid,)),
"beatmapid": lambda: SimpleRecalculator(("scores_relax.completed = 3", "beatmaps.beatmap_id = %s",), (args.beatmapid,)),
"fixstdhd": lambda: SimpleRecalculator(("scores_relax.completed = 3", "scores_relax.play_mode = 0", "scores_relax.mods & 8 > 0"))
}
recalculator = None
for k, v in vars(args).items():
if v is not None and ((type(v) is bool and v) or type(v) is not bool):
if k in recalculators_gen:
recalculator = recalculators_gen[k]()
break
# Execute mass recalc
if recalculator is not None:
mass_recalc(recalculator, workers_number, chunk_size)
else:
logging.warning("No recalc option specified")
parser.print_help()
if __name__ == "__main__":
main()