forked from OpenRobotLab/EmbodiedScan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mv-grounding_8xb12_embodiedscan-vg-9dof-full.py
210 lines (195 loc) · 8.23 KB
/
mv-grounding_8xb12_embodiedscan-vg-9dof-full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
_base_ = ['../default_runtime.py']
n_points = 100000
backend_args = None
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/scannet/':
# 's3://openmmlab/datasets/detection3d/scannet_processed/',
# 'data/scannet/':
# 's3://openmmlab/datasets/detection3d/scannet_processed/'
# }))
metainfo = dict(classes='all')
model = dict(
type='SparseFeatureFusion3DGrounder',
num_queries=256,
voxel_size=0.01,
data_preprocessor=dict(type='Det3DDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32),
backbone=dict(
type='mmdet.ResNet',
depth=50,
base_channels=16, # to make it consistent with mink resnet
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
style='pytorch'),
backbone_lidar=dict(type='MinkResNet', in_channels=3, depth=34),
use_xyz_feat=True,
# change due to no img feature fusion
neck_3d=dict(type='MinkNeck',
num_classes=1,
in_channels=[128, 256, 512, 1024],
out_channels=256,
voxel_size=0.01,
pts_prune_threshold=1000),
decoder=dict(
num_layers=6,
return_intermediate=True,
layer_cfg=dict(
# query self attention layer
self_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0),
# cross attention layer query to text
cross_attn_text_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0),
# cross attention layer query to image
cross_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0),
ffn_cfg=dict(embed_dims=256,
feedforward_channels=2048,
ffn_drop=0.0)),
post_norm_cfg=None),
bbox_head=dict(type='GroundingHead',
num_classes=256,
sync_cls_avg_factor=True,
decouple_bbox_loss=True,
decouple_groups=4,
share_pred_layer=True,
decouple_weights=[0.2, 0.2, 0.2, 0.4],
contrastive_cfg=dict(max_text_len=256,
log_scale='auto',
bias=True),
loss_cls=dict(type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='BBoxCDLoss',
mode='l1',
loss_weight=1.0,
group='g8')),
coord_type='DEPTH',
# training and testing settings
train_cfg=dict(assigner=dict(type='HungarianAssigner3D',
match_costs=[
dict(type='BinaryFocalLossCost',
weight=1.0),
dict(type='BBox3DL1Cost', weight=2.0),
dict(type='IoU3DCost', weight=2.0)
]), ),
test_cfg=None)
dataset_type = 'MultiView3DGroundingDataset'
data_root = 'data'
train_pipeline = [
dict(type='LoadAnnotations3D'),
dict(type='MultiViewPipeline',
n_images=20,
transforms=[
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='LoadDepthFromFile', backend_args=backend_args),
dict(type='ConvertRGBDToPoints', coord_type='CAMERA'),
dict(type='PointSample', num_points=n_points // 10),
dict(type='Resize', scale=(480, 480), keep_ratio=False)
]),
dict(type='AggregateMultiViewPoints', coord_type='DEPTH'),
dict(type='PointSample', num_points=n_points),
dict(type='GlobalRotScaleTrans',
rot_range=[-0.087266, 0.087266],
scale_ratio_range=[.9, 1.1],
translation_std=[.1, .1, .1],
shift_height=False),
dict(type='Pack3DDetInputs',
keys=['img', 'points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(type='LoadAnnotations3D'),
dict(type='MultiViewPipeline',
n_images=50,
ordered=True,
transforms=[
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='LoadDepthFromFile', backend_args=backend_args),
dict(type='ConvertRGBDToPoints', coord_type='CAMERA'),
dict(type='PointSample', num_points=n_points // 10),
dict(type='Resize', scale=(480, 480), keep_ratio=False)
]),
dict(type='AggregateMultiViewPoints', coord_type='DEPTH'),
dict(type='PointSample', num_points=n_points),
dict(type='Pack3DDetInputs',
keys=['img', 'points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
# TODO: to determine a reasonable batch size
train_dataloader = dict(
batch_size=12,
num_workers=12,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(type='RepeatDataset',
times=1,
dataset=dict(type=dataset_type,
data_root=data_root,
ann_file='embodiedscan_infos_train.pkl',
vg_file='embodiedscan_train_full_vg.json',
metainfo=metainfo,
pipeline=train_pipeline,
test_mode=False,
filter_empty_gt=True,
box_type_3d='Euler-Depth')))
val_dataloader = dict(batch_size=12,
num_workers=12,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(type=dataset_type,
data_root=data_root,
ann_file='embodiedscan_infos_val.pkl',
vg_file='embodiedscan_val_full_vg.json',
metainfo=metainfo,
pipeline=test_pipeline,
test_mode=True,
filter_empty_gt=True,
box_type_3d='Euler-Depth'))
test_dataloader = val_dataloader
val_evaluator = dict(type='GroundingMetric')
test_evaluator = val_evaluator
# training schedule for 1x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=3)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# optimizer
lr = 5e-4
optim_wrapper = dict(type='OptimWrapper',
optimizer=dict(type='AdamW', lr=lr, weight_decay=0.0005),
paramwise_cfg=dict(
custom_keys={
'text_encoder': dict(lr_mult=0.0),
'decoder': dict(lr_mult=0.1, decay_mult=1.0)
}),
clip_grad=dict(max_norm=10, norm_type=2))
# learning rate
param_scheduler = dict(type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[8, 11],
gamma=0.1)
custom_hooks = [dict(type='EmptyCacheHook', after_iter=True)]
# hooks
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# vis_backends = [
# dict(type='TensorboardVisBackend'),
# dict(type='LocalVisBackend')
# ]
# visualizer = dict(
# type='Det3DLocalVisualizer',
# vis_backends=vis_backends, name='visualizer')
find_unused_parameters = True
load_from = '/mnt/petrelfs/wangtai/EmbodiedScan/work_dirs/mv-3ddet-challenge/epoch_12.pth' # noqa