-
Notifications
You must be signed in to change notification settings - Fork 1
/
challenge.m
53 lines (49 loc) · 1.47 KB
/
challenge.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
function classifyResult = challenge(recordName)
%
% Sample entry for the 2017 PhysioNet/CinC Challenge.
%
% INPUTS:
% recordName: string specifying the record name to process
%
% OUTPUTS:
% classifyResult: integer value where
% N = normal rhythm
% A = AF
% O = other rhythm
% ~ = noisy recording (poor signal quality)
%
% To run your entry on the entire training set in a format that is
% compatible with PhysioNet's scoring enviroment, run the script
% generateValidationSet.m
%
% The challenge function requires that you have downloaded the challenge
% data 'training_set' in a subdirectory of the current directory.
% http://physionet.org/physiobank/database/challenge/2017/
%
% This dataset is used by the generateValidationSet.m script to create
% the annotations on your training set that will be used to verify that
% your entry works properly in the PhysioNet testing environment.
%
%
% Version 1.0
%
%
% Written by: Chengyu Liu and Qiao Li January 20 2017
%
% Last modified by:
%
%
classifyResult = 'N'; % default output normal rhythm
%% AF determination
[tm,ecg,fs,siginfo]=rdmat(recordName);
[QRS,sign,en_thres] = qrs_detect2(ecg',0.25,0.6,fs);
if length(QRS)<6
else
RR=diff(QRS')/fs;
AFEv = comput_AFEv(RR);
if AFEv>1
classifyResult = 'A';
end
end
%% You can add the determination rules for other rhythm and noisy recordings here