-
Notifications
You must be signed in to change notification settings - Fork 0
/
evalData.py
308 lines (269 loc) · 12.2 KB
/
evalData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from __future__ import print_function
import torch
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from data import VOC_ROOT, VOCAnnotationTransform, VOCDetection, BaseTransform
from data import VOC_CLASSES as labelmap
from layers.img_utils import show_PrecisionRecall
from ssd import build_ssd
import sys
import os
import numpy as np
import warnings
warnings.filterwarnings("ignore")
if sys.version_info[0] == 2:
import xml.etree.cElementTree as ET
else:
import xml.etree.ElementTree as ET
def parse_rec(filename):
""" Parse a PASCAL VOC xml file """
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
obj_struct['pose'] = obj.find('pose').text
obj_struct['truncated'] = int(obj.find('truncated').text)
obj_struct['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_struct['bbox'] = [int(bbox.find('xmin').text) - 1,
int(bbox.find('ymin').text) - 1,
int(bbox.find('xmax').text) - 1,
int(bbox.find('ymax').text) - 1]
objects.append(obj_struct)
return objects
class EvalData:
def __init__(self, trained_model="D:\WorkSpace\PyCharmSpace\SSD\ssd.pytorch-master\weights\VOC.pth",
save_folder="D:\WorkSpace\PyCharmSpace\SSD\ssd.pytorch-master\gui\eval\\",
cuda=False, voc_root=VOC_ROOT):
self.trained_model = trained_model
self.save_folder = save_folder
self.cuda = cuda
self.voc_root = voc_root
self.annopath = 'D:\WorkSpace\PyCharmSpace\SSD\ssd.pytorch-master\data\VOCdevkit\VOC2007\Annotations\%s.xml'
self.imgpath = 'D:\WorkSpace\PyCharmSpace\SSD\ssd.pytorch-master\data\VOCdevkit\VOC2007\JPEGImages\%s.jpg'
self.imgsetpath = 'D:\WorkSpace\PyCharmSpace\SSD\ssd.pytorch-master\data\VOCdevkit\VOC2007\ImageSets\Main\{:s}.txt'
self.YEAR = '2007'
self.devkit_path = self.save_folder + 'VOC' + self.YEAR
self.dataset_mean = (104, 117, 123)
self.set_type = 'test'
def set_equipment(self):
if torch.cuda.is_available():
if self.cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if not self.cuda:
print("WARNING: It looks like you have a CUDA device, but aren't " +
"using CUDA.\nRun with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
if not os.path.exists(self.save_folder):
os.mkdir(self.save_folder)
def start_eval(self):
# load net
num_classes = len(labelmap) + 1 # +1 for background
net = build_ssd('test', 300, num_classes) # initialize SSD
net.load_state_dict(torch.load(self.trained_model))
net.eval()
print('Finished loading model!')
# load data
dataset = VOCDetection(self.voc_root, [('2007', self.set_type)],
BaseTransform(300, self.dataset_mean),
VOCAnnotationTransform())
if self.cuda:
net = net.cuda()
cudnn.benchmark = False
# evaluation
self.test_net(net, self.cuda, dataset)
def get_voc_results_file_template(self, image_set, cls):
# VOCdevkit/VOC2007/results/det_test_aeroplane.txt
filename = 'det_' + image_set + '_%s.txt' % (cls)
filedir = os.path.join(self.devkit_path, 'results')
if not os.path.exists(filedir):
os.makedirs(filedir)
path = os.path.join(filedir, filename)
return path
def write_voc_results_file(self, all_boxes, dataset):
for cls_ind, cls in enumerate(labelmap):
print('Writing {:s} VOC results file'.format(cls))
filename = self.get_voc_results_file_template(self.set_type, cls)
with open(filename, 'wt') as f:
for im_ind, index in enumerate(dataset.ids):
dets = all_boxes[cls_ind + 1][im_ind]
if dets == []:
continue
# the VOCdevkit expects 1-based indices
for k in range(dets.shape[0]):
f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
format(index[1], dets[k, -1],
dets[k, 0] + 1, dets[k, 1] + 1,
dets[k, 2] + 1, dets[k, 3] + 1))
def voc_ap(self, rec, prec, use_07_metric=True):
"""
ap = voc_ap(rec, prec, [use_07_metric])
Compute VOC AP given precision and recall.
If use_07_metric is true, uses the VOC 07 11 point method (default:True).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def voc_eval(self, detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=True):
# read list of images
with open(imagesetfile, 'r') as f:
lines = f.readlines()
imagenames = [x.strip() for x in lines]
# load annots
recs = {}
for i, imagename in enumerate(imagenames):
recs[imagename] = parse_rec(annopath % (imagename))
if i % 100 == 0:
print('Reading annotation for {:d}/{:d}'.format(i + 1, len(imagenames)))
# extract gt objects for this class
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj['name'] == classname]
bbox = np.array([x['bbox'] for x in R])
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
det = [False] * len(R)
npos = npos + sum(~difficult)
class_recs[imagename] = {'bbox': bbox,
'difficult': difficult,
'det': det}
# read dets
detfile = detpath.format(classname)
with open(detfile, 'r') as f:
lines = f.readlines()
if any(lines) == 1:
splitlines = [x.strip().split(' ') for x in lines]
image_ids = [x[0] for x in splitlines]
confidence = np.array([float(x[1]) for x in splitlines])
BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
# sort by confidence
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin, 0.)
ih = np.maximum(iymax - iymin, 0.)
inters = iw * ih
uni = ((bb[2] - bb[0]) * (bb[3] - bb[1]) +
(BBGT[:, 2] - BBGT[:, 0]) *
(BBGT[:, 3] - BBGT[:, 1]) - inters)
overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
if ovmax > ovthresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = self.voc_ap(rec, prec, use_07_metric)
else:
rec = -1.
prec = -1.
ap = -1.
show_PrecisionRecall(self.save_folder+"PRcurve\\", classname, prec, rec, ap)
return rec, prec, ap
def do_python_eval(self, use_07=True):
self.aps = []
# The PASCAL VOC metric changed in 2010
use_07_metric = use_07
print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
for i, cls in enumerate(labelmap):
filename = self.get_voc_results_file_template(self.set_type, cls)
rec, prec, ap = self.voc_eval(
filename, self.annopath, self.imgsetpath.format(self.set_type), cls,
ovthresh=0.5, use_07_metric=use_07_metric)
self.aps += [ap]
# print('~~~~~~~~')
# print('Results:')
# for ap in aps:
# print('{:.3f}'.format(ap))
# print('Mean AP = {:.4f}'.format(np.mean(aps)))
def evaluate_detections(self, box_list, dataset):
self.write_voc_results_file(box_list, dataset)
self.do_python_eval()
def test_net(self, net, cuda, dataset):
num_images = 3
# num_images = len(dataset)
# all detections are collected into:
# all_boxes[cls][image] = N x 5 array of detections in
# (x1, y1, x2, y2, score)
all_boxes = [[[] for _ in range(9963)]
for _ in range(len(labelmap) + 1)]
for i in range(num_images):
im, gt, h, w = dataset.pull_item(i)
x = Variable(im.unsqueeze(0))
if cuda:
x = x.cuda()
detections = net(x).data
# skip j = 0, because it's the background class
for j in range(1, detections.size(1)):
dets = detections[0, j, :]
mask = dets[:, 0].gt(0.).expand(5, dets.size(0)).t()
dets = torch.masked_select(dets, mask).view(-1, 5)
if dets.size(0) == 0:
continue
boxes = dets[:, 1:]
boxes[:, 0] *= w
boxes[:, 2] *= w
boxes[:, 1] *= h
boxes[:, 3] *= h
scores = dets[:, 0].cpu().numpy()
cls_dets = np.hstack((boxes.cpu().numpy(),
scores[:, np.newaxis])).astype(np.float32,
copy=False)
all_boxes[j][i] = cls_dets
print('Evaluating detections')
self.evaluate_detections(all_boxes, dataset)
if __name__ == '__main__':
a = EvalData()
a.start_eval()