-
Notifications
You must be signed in to change notification settings - Fork 2
/
test.py
390 lines (365 loc) · 14.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Obtained from: https://github.com/open-mmlab/mmsegmentation/tree/v0.16.0
# Modifications:
# - Modification of config and checkpoint to support legacy models
# - Add inference mode and HRDA output flag
# - Add testing on other datasets, model parts, and dataset splits
# - Save evaluation results to json file
import argparse
import json
import os
from copy import deepcopy
import mmcv
import torch
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
wrap_fp16_model)
from mmcv.utils import DictAction
from mmseg.apis import multi_gpu_test, single_gpu_test
from mmseg.datasets import build_dataloader, build_dataset
from mmseg.models import build_segmentor
def update_legacy_cfg(cfg):
# The saved json config does not differentiate between list and tuple
cfg.data.test.pipeline[1]['img_scale'] = tuple(
cfg.data.test.pipeline[1]['img_scale'])
cfg.data.val.pipeline[1]['img_scale'] = tuple(
cfg.data.val.pipeline[1]['img_scale'])
# Support legacy checkpoints
if cfg.model.decode_head.type == 'UniHead':
cfg.model.decode_head.type = 'DAFormerHead'
cfg.model.decode_head.decoder_params.fusion_cfg.pop('fusion', None)
if cfg.model.type == 'MultiResEncoderDecoder':
cfg.model.type = 'HRDAEncoderDecoder'
if cfg.model.decode_head.type == 'MultiResAttentionWrapper':
cfg.model.decode_head.type = 'HRDAHead'
cfg.model.backbone.pop('ema_drop_path_rate', None)
return cfg
def parse_args():
parser = argparse.ArgumentParser(
description='mmseg test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--aug-test', action='store_true', help='Use Flip and Multi scale aug')
parser.add_argument(
'--inference-mode',
choices=[
'same',
'whole',
'slide',
],
default='same',
help='Inference mode.')
parser.add_argument('--dataset', default='Config')
parser.add_argument(
'--model',
choices=[
'model',
'ema_model',
],
default='model',
help='Submodel to evaluate.')
parser.add_argument(
'--train-set',
action='store_true',
help='Run inference on the train set')
parser.add_argument(
'--test-set',
action='store_true',
help='Run inference on the test set')
parser.add_argument(
'--hrda-out',
choices=['', 'LR', 'HR', 'ATT'],
default='',
help='Extract LR and HR predictions from HRDA architecture.')
parser.add_argument('--out', help='output result file in pickle format')
parser.add_argument(
'--format-only',
action='store_true',
help='Format the output results without perform evaluation. It is'
'useful when you want to format the result to a specific format and '
'submit it to the test server')
parser.add_argument(
'--eval',
type=str,
nargs='+',
help='evaluation metrics, which depends on the dataset, e.g., "mIoU"'
' for generic datasets, and "cityscapes" for Cityscapes')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--show-dir', help='directory where painted images will be saved')
parser.add_argument(
'--gpu-collect',
action='store_true',
help='whether to use gpu to collect results.')
parser.add_argument(
'--tmpdir',
help='tmp directory used for collecting results from multiple '
'workers, available when gpu_collect is not specified')
parser.add_argument(
'--options', nargs='+', action=DictAction, help='custom options')
parser.add_argument(
'--eval-options',
nargs='+',
action=DictAction,
help='custom options for evaluation')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument(
'--opacity',
type=float,
default=0.5,
help='Opacity of painted segmentation map. In (0, 1] range.')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
assert args.out or args.eval or args.format_only or args.show \
or args.show_dir, \
('Please specify at least one operation (save/eval/format/show the '
'results / save the results) with the argument "--out", "--eval"'
', "--format-only", "--show" or "--show-dir"')
if args.eval and args.format_only:
raise ValueError('--eval and --format_only cannot be both specified')
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = mmcv.Config.fromfile(args.config)
if args.options is not None:
cfg.merge_from_dict(args.options)
cfg = update_legacy_cfg(cfg)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
if args.aug_test:
# hard code index
cfg.data.test.pipeline[1].img_ratios = [
0.5, 0.75, 1.0, 1.25, 1.5, 1.75
]
cfg.data.test.pipeline[1].flip = True
cfg.model.pretrained = None
cfg.data.test.test_mode = True
if args.inference_mode == 'same':
# Use pre-defined inference mode
pass
elif args.inference_mode == 'whole':
print('Force whole inference.')
cfg.model.test_cfg.mode = 'whole'
elif args.inference_mode == 'slide':
print('Force slide inference.')
cfg.model.test_cfg.mode = 'slide'
crsize = cfg.data.train.get('sync_crop_size', cfg.crop_size)
cfg.model.test_cfg.crop_size = crsize
cfg.model.test_cfg.stride = [int(e / 2) for e in crsize]
cfg.model.test_cfg.batched_slide = True
else:
raise NotImplementedError(args.inference_mode)
if args.hrda_out == 'LR':
cfg['model']['decode_head']['fixed_attention'] = 0.0
elif args.hrda_out == 'HR':
cfg['model']['decode_head']['fixed_attention'] = 1.0
elif args.hrda_out == 'ATT':
cfg['model']['decode_head']['debug_output_attention'] = True
elif args.hrda_out == '':
pass
else:
raise NotImplementedError(args.hrda_out)
assert not (args.train_set and args.test_set)
eval_set = 'val'
if args.train_set:
eval_set = 'train'
for k in cfg.data.test:
if isinstance(cfg.data.test[k], str):
cfg.data.test[k] = cfg.data.test[k].replace('val', 'train')
if args.test_set:
eval_set = 'test'
for k in cfg.data.test:
if isinstance(cfg.data.test[k], str):
cfg.data.test[k] = cfg.data.test[k].replace('val', 'test')
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# build the dataloader
# TODO: support multiple images per gpu (only minor changes are needed)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
if args.dataset == 'Config':
dataset = build_dataset(cfg.data.test)
elif args.dataset == 'GTA':
"""
This GTA dataset is used for loss computation purpose.
"""
pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(1280, 720)),
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
dataset = build_dataset(
dict(
type='GTADataset',
data_root='data/gta/',
img_dir='images',
ann_dir='labels',
pipeline=pipeline))
elif args.dataset == 'Cityscapes':
pipeline = deepcopy(cfg.data.test.pipeline)
dataset = build_dataset(
dict(
type='CityscapesDataset',
data_root='data/cityscapes/',
img_dir='leftImg8bit/val',
ann_dir='gtFine/val',
pipeline=pipeline))
elif args.dataset == 'BDD100K':
pipeline = deepcopy(cfg.data.test.pipeline)
dataset = build_dataset(
dict(
type='BDD100KDataset',
data_root='data/bdd100k',
img_dir='images/10k/val',
ann_dir='labels/sem_seg/masks/val',
pipeline=pipeline))
elif args.dataset == 'Mapillary':
pipeline = deepcopy(cfg.data.test.pipeline)
dataset = build_dataset(
dict(
type='MapillaryDataset',
data_root='data/mapillary',
img_dir='validation/images',
ann_dir='validation/labels',
pipeline=pipeline))
elif args.dataset == 'ACDC':
if 'hrda' in args.config:
acdc_img_scale = (1920, 1080)
else:
acdc_img_scale = (960, 540)
pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=acdc_img_scale, # original 1920x1080
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])]
dataset = build_dataset(
dict(
type='ACDCDataset',
data_root='data/acdc',
img_dir='rgb_anon/val',
ann_dir='gt/val',
pipeline=pipeline))
elif args.dataset == 'DarkZurich':
if 'hrda' in args.config:
dz_img_scale = (1920, 1080)
else:
dz_img_scale = (960, 540)
pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=dz_img_scale,
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])]
dataset = build_dataset(
dict(
type='DarkZurichDataset',
data_root='data/dark_zurich',
img_dir='rgb_anon/val',
ann_dir='gt/val',
pipeline=pipeline))
else:
raise NotImplementedError(args.dataset)
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
cfg.model.train_cfg = None
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg'))
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(
model,
args.checkpoint,
map_location='cpu',
revise_keys=[(r'^module\.', ''), (f'{args.model}.', '')])
if 'CLASSES' in checkpoint.get('meta', {}):
model.CLASSES = checkpoint['meta']['CLASSES']
else:
print('"CLASSES" not found in meta, use dataset.CLASSES instead')
model.CLASSES = dataset.CLASSES
if 'PALETTE' in checkpoint.get('meta', {}):
model.PALETTE = checkpoint['meta']['PALETTE']
else:
print('"PALETTE" not found in meta, use dataset.PALETTE instead')
model.PALETTE = dataset.PALETTE
efficient_test = False
if args.eval_options is not None:
efficient_test = args.eval_options.get('efficient_test', False)
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
efficient_test, args.opacity)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
args.gpu_collect, efficient_test)
rank, _ = get_dist_info()
if rank == 0:
if args.out:
print(f'\nwriting results to {args.out}')
mmcv.dump(outputs, args.out)
kwargs = {} if args.eval_options is None else args.eval_options
if args.format_only:
dataset.format_results(outputs, **kwargs)
if args.eval:
res = dataset.evaluate(outputs, args.eval, **kwargs)
if args.dataset == 'Config':
res_file = args.checkpoint.replace(
'.pth', f'_{args.model}_{eval_set}_iou.json')
else:
res_file = args.checkpoint.replace(
'.pth', f'_{args.model}_{args.dataset}_'
f'{eval_set}_iou.json')
assert res_file != args.checkpoint
with open(res_file, 'w') as fp:
json.dump(res, fp, indent=4)
print([k for k, v in res.items() if 'IoU' in k])
print([round(v * 100, 1) for k, v in res.items() if 'IoU' in k])
if __name__ == '__main__':
main()